Degeneration of Abelian Varieties
Seiten
1991
|
1990
Springer Berlin (Verlag)
978-3-540-52015-3 (ISBN)
Springer Berlin (Verlag)
978-3-540-52015-3 (ISBN)
The topic of this book is the theory of degenerations of abelian varieties and its application to the construction of compactifications of moduli spaces of abelian varieties. These compactifications have applications to diophantine problems and, of course, are also interesting in their own right. Degenerations of abelian varieties are given by maps G - S with S an irre ducible scheme and G a group variety whose generic fibre is an abelian variety. One would like to classify such objects, which, however, is a hopeless task in this generality. But for more specialized families we can obtain more: The most important theorem about degenerations is the stable reduction theorem, which gives some evidence that for questions of compactification it suffices to study semi-abelian families; that is, we may assume that G is smooth and flat over S, with fibres which are connected extensions of abelian varieties by tori. A further assumption will be that the base S is normal, which makes such semi-abelian families extremely well behaved. In these circumstances, we give a rather com plete classification in case S is the spectrum of a complete local ring, and for general S we can still say a good deal. For a complete base S = Spec(R) (R a complete and normal local domain) the main result about degenerations says roughly that G is (in some sense) a quotient of a covering G by a group of periods.
I. Preliminaries.- II. Degeneration of Polarized Abelian Varieties.- III. Mumford's Construction.- IV. Toroidal Compactification of Ag.- V. Modular Forms and the Minimal Compactification.- VI. Eichler Integrals in Several Variables.- VII. Hecke Operators and Frobenii.- Glossary of Notations.- An Analytic Construction of Degenerating Abelian Varieties over Complete Rings.- David Mumford.
Erscheint lt. Verlag | 9.1.1991 |
---|---|
Reihe/Serie | Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics |
Zusatzinfo | XII, 318 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 712 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Schlagworte | Abelsche Mannigfaltigkeit • diophantine geometry • diophantische Geometrie • Hecke Operator • Moduli Raum • moduli space • Schema • schemes • Siegel modular form • Siegelsche Modulfunktion |
ISBN-10 | 3-540-52015-5 / 3540520155 |
ISBN-13 | 978-3-540-52015-3 / 9783540520153 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Sieben ausgewählte Themenstellungen
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 89,95
unlock your imagination with the narrative of numbers
Buch | Softcover (2024)
Advantage Media Group (Verlag)
CHF 27,90
Seltsame Mathematik - Enigmatische Zahlen - Zahlenzauber
Buch | Softcover (2024)
BoD – Books on Demand (Verlag)
CHF 27,95