Resource Management for Big Data Platforms (eBook)
XIII, 516 Seiten
Springer International Publishing (Verlag)
978-3-319-44881-7 (ISBN)
Serving as a flagship driver towards advance research in the area of Big Data platforms and applications, this book provides a platform for the dissemination of advanced topics of theory, research efforts and analysis, and implementation oriented on methods, techniques and performance evaluation. In 23 chapters, several important formulations of the architecture design, optimization techniques, advanced analytics methods, biological, medical and social media applications are presented. These chapters discuss the research of members from the ICT COST Action IC1406 High-Performance Modelling and Simulation for Big Data Applications (cHiPSet). This volume is ideal as a reference for students, researchers and industry practitioners working in or interested in joining interdisciplinary works in the areas of intelligent decision systems using emergent distributed computing paradigms. It will also allow newcomers to grasp the key concerns and their potential solutions.
Dr. Florin Pop is an Associate Professor in the Distributed Systems Laboratory of the Computer Science Department at the University Politehnica of Bucharest, Romania.
Dr. Joanna Kołodziej is a Professor in the Department of Computer Science at Cracow University of Technology, Poland. Amongst her recent publications are the Springer titles Intelligent Agents in Data-intensive Computing and Evolutionary Based Solutions for Green Computing.
Dr. Beniamino Di Martino is a full Professor of Information Systems at the Second University of Naples, Italy. His publications include the Springer titles Cloud Portability and Interoperability and Smart Organizations and Smart Artifacts.
Dr. Florin Pop is an Associate Professor in the Distributed Systems Laboratory of the Computer Science Department at the University Politehnica of Bucharest, Romania. Dr. Joanna Kołodziej is a Professor in the Department of Computer Science at Cracow University of Technology, Poland. Amongst her recent publications are the Springer titles Intelligent Agents in Data-intensive Computing and Evolutionary Based Solutions for Green Computing. Dr. Beniamino Di Martino is a full Professor of Information Systems at the Second University of Naples, Italy. His publications include the Springer titles Cloud Portability and Interoperability and Smart Organizations and Smart Artifacts.
Performance Modeling of Big Data Oriented Architectures Marco Gribaudo, Mauro Iacono, and Francesco Palmieri
Workflow Scheduling Techniques for Big Data Platforms Mihaela-Catalina Nita, Mihaela Vasile, Florin Pop, and Valentin Cristea
Cloud Technologies: A New Level for Big Data Mining Viktor Medvedev and Olga Kurasova
Agent Based High-Level Interaction Patterns for Modeling Individual and Collective Optimizations Problems Rocco Aversa and Luca Tasquier
Maximize Profit for Big Data Processing in Distributed Datacenters Weidong Bao, Ji Wang, and Xiaomin Zhu
Energy and Power Efficiency in the Cloud Michał Karpowicz, Ewa Niewiadomska-Szynkiewicz, Piotr Arabas, and Andrzej Sikora
Context Aware and Reinforcement Learning Based Load Balancing System for Green Clouds Ionut Anghel, Tudor Cioara, and Ioan Salomie
High-Performance Storage Support for Scientific Big Data Applications on the Cloud Dongfang Zhao, Akash Mahakode, Sandip Lakshminarasaiah, and Ioan Raicu
Information Fusion for Improving Decision-Making in Big Data Applications Nayat Sanchez-Pi, Luis Martí, José Manuel Molina, and Ana C. Bicharra Garca
Load Balancing and Fault Tolerance Mechanisms for Scalable and Reliable Big Data Analytics Nitin Sukhija, Alessandro Morari, and Ioana BanicescuFault Tolerance in MapReduce: A Survey Bunjamin Memishi, Shadi Ibrahim, María S. Pérez, and Gabriel Antoniu
Big Data Security Agnieszka Jakóbik
Big Biological Data Management Edvard Pedersen and Lars Ailo Bongo
Optimal Worksharing of DNA Sequence Analysis on Accelerated Platforms Suejb Memeti, Sabri Pllana, and Joanna Kołodziej
Feature Dimensionality Reduction for Mammographic Report Classification Agnello Luca, Comelli Albert, and Vitabile Salvatore
Parallel Algorithms for Multi-Relational Data Mining: Application to Life Science Problems Rui Camacho, Jorge G. Barbosa, Altino Sampaio, João Ladeiras, Nuno A. Fonseca and Vítor S. Costa
Parallelization of Sparse Matrix Kernels for Big Data Applications Oguz Selvitopi, Kadir Akbudak, and Cevdet Aykanat
Delivering Social Multimedia Content with Scalability Irene Kilanioti and George A. Papadopoulos
A Java-Based Distributed Approach for Generating Large-Scale Social Network Graphs Vlad Serbanescu, Keyvan Azadbakht, and Frank de Boer
Predicting Video Virality on Twitter Irene Kilanioti and George A. Papadopoulos
Big Data uses in Crowd Based Systems Cristian Chilipirea, Andreea-Cristina Petre, and Ciprian Dobre
Evaluation of a Web Crowd–Sensing IoT Ecosystem Providing Big Data Analysis Ioannis Vakintis, Spyros Panagiotakis, George Mastorakis, and Constandinos X. Mavromoustakis
A Smart City Fighting Pollution by Efficiently Managing and Processing Big Data from Sensor Networks Voichiţa Iancu, Silvia Cristina Stegaru, and Dan Ştefan Tudose
Erscheint lt. Verlag | 27.10.2016 |
---|---|
Reihe/Serie | Computer Communications and Networks | Computer Communications and Networks |
Zusatzinfo | XIII, 516 p. 138 illus., 57 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Datenbanken |
Mathematik / Informatik ► Informatik ► Netzwerke | |
Schlagworte | Big-Data platforms • High-Performance Computing • Massive Data Processing • Modelling and Simulation • Performance Analysis |
ISBN-10 | 3-319-44881-1 / 3319448811 |
ISBN-13 | 978-3-319-44881-7 / 9783319448817 |
Haben Sie eine Frage zum Produkt? |
Größe: 14,7 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich