Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Resource Management for Big Data Platforms (eBook)

Algorithms, Modelling, and High-Performance Computing Techniques
eBook Download: PDF
2016 | 1st ed. 2016
XIII, 516 Seiten
Springer International Publishing (Verlag)
978-3-319-44881-7 (ISBN)

Lese- und Medienproben

Resource Management for Big Data Platforms -
Systemvoraussetzungen
149,79 inkl. MwSt
(CHF 146,30)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Serving as a flagship driver towards advance research in the area of Big Data platforms and applications, this book provides a platform for the dissemination of advanced topics of theory, research efforts and analysis, and implementation oriented on methods, techniques and performance evaluation. In 23 chapters, several important formulations of the architecture design, optimization techniques, advanced analytics methods, biological, medical and social media applications are presented. These chapters discuss the research of members from the ICT COST Action IC1406 High-Performance Modelling and Simulation for Big Data Applications (cHiPSet). This volume is ideal as a reference for students, researchers and industry practitioners working in or interested in joining interdisciplinary works in the areas of intelligent decision systems using emergent distributed computing paradigms. It will also allow newcomers to grasp the key concerns and their potential solutions.



Dr. Florin Pop is an Associate Professor in the Distributed Systems Laboratory of the Computer Science Department at the University Politehnica of Bucharest, Romania.

Dr. Joanna Kołodziej is a Professor in the Department of Computer Science at Cracow University of Technology, Poland. Amongst her recent publications are the Springer titles Intelligent Agents in Data-intensive Computing and Evolutionary Based Solutions for Green Computing.

Dr. Beniamino Di Martino is a full Professor of Information Systems at the Second University of Naples, Italy. His publications include the Springer titles Cloud Portability and Interoperability and Smart Organizations and Smart Artifacts.

Dr. Florin Pop is an Associate Professor in the Distributed Systems Laboratory of the Computer Science Department at the University Politehnica of Bucharest, Romania. Dr. Joanna Kołodziej is a Professor in the Department of Computer Science at Cracow University of Technology, Poland. Amongst her recent publications are the Springer titles Intelligent Agents in Data-intensive Computing and Evolutionary Based Solutions for Green Computing. Dr. Beniamino Di Martino is a full Professor of Information Systems at the Second University of Naples, Italy. His publications include the Springer titles Cloud Portability and Interoperability and Smart Organizations and Smart Artifacts.

Performance Modeling of Big Data Oriented Architectures Marco Gribaudo, Mauro Iacono, and Francesco Palmieri

Workflow Scheduling Techniques for Big Data Platforms Mihaela-Catalina Nita, Mihaela Vasile, Florin Pop, and Valentin Cristea

Cloud Technologies: A New Level for Big Data Mining Viktor Medvedev and Olga Kurasova

Agent Based High-Level Interaction Patterns for Modeling Individual and Collective Optimizations Problems Rocco Aversa and Luca Tasquier

Maximize Profit for Big Data Processing in Distributed Datacenters Weidong Bao, Ji Wang, and Xiaomin Zhu

Energy and Power Efficiency in the Cloud Michał Karpowicz, Ewa Niewiadomska-Szynkiewicz, Piotr Arabas, and Andrzej Sikora

Context Aware and Reinforcement Learning Based Load Balancing System for Green Clouds Ionut Anghel, Tudor Cioara, and Ioan Salomie

High-Performance Storage Support for Scientific Big Data Applications on the Cloud Dongfang Zhao, Akash Mahakode, Sandip Lakshminarasaiah, and Ioan Raicu

Information Fusion for Improving Decision-Making in Big Data Applications Nayat Sanchez-Pi, Luis Martí, José Manuel Molina, and Ana C. Bicharra Garca

Load Balancing and Fault Tolerance Mechanisms for Scalable and Reliable Big Data Analytics Nitin Sukhija, Alessandro Morari, and Ioana BanicescuFault Tolerance in MapReduce: A Survey Bunjamin Memishi, Shadi Ibrahim, María S. Pérez, and Gabriel Antoniu

Big Data Security Agnieszka Jakóbik

Big Biological Data Management Edvard Pedersen and Lars Ailo Bongo

Optimal Worksharing of DNA Sequence Analysis on Accelerated Platforms Suejb Memeti, Sabri Pllana, and Joanna Kołodziej

Feature Dimensionality Reduction for Mammographic Report Classification Agnello Luca, Comelli Albert, and Vitabile Salvatore

Parallel Algorithms for Multi-Relational Data Mining: Application to Life Science Problems Rui Camacho, Jorge G. Barbosa, Altino Sampaio, João Ladeiras, Nuno A. Fonseca and Vítor S. Costa

Parallelization of Sparse Matrix Kernels for Big Data Applications Oguz Selvitopi, Kadir Akbudak, and Cevdet Aykanat

Delivering Social Multimedia Content with Scalability Irene Kilanioti and George A. Papadopoulos

A Java-Based Distributed Approach for Generating Large-Scale Social Network Graphs Vlad Serbanescu, Keyvan Azadbakht, and Frank de Boer

Predicting Video Virality on Twitter Irene Kilanioti and George A. Papadopoulos

Big Data uses in Crowd Based Systems Cristian Chilipirea, Andreea-Cristina Petre, and Ciprian Dobre

Evaluation of a Web Crowd–Sensing IoT Ecosystem Providing Big Data Analysis Ioannis Vakintis, Spyros Panagiotakis, George Mastorakis, and Constandinos X. Mavromoustakis

A Smart City Fighting Pollution by Efficiently Managing and Processing Big Data from Sensor Networks Voichiţa Iancu, Silvia Cristina Stegaru, and Dan Ştefan Tudose

Erscheint lt. Verlag 27.10.2016
Reihe/Serie Computer Communications and Networks
Computer Communications and Networks
Zusatzinfo XIII, 516 p. 138 illus., 57 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Datenbanken
Mathematik / Informatik Informatik Netzwerke
Schlagworte Big-Data platforms • High-Performance Computing • Massive Data Processing • Modelling and Simulation • Performance Analysis
ISBN-10 3-319-44881-1 / 3319448811
ISBN-13 978-3-319-44881-7 / 9783319448817
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 14,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Grundkurs für Ausbildung und Praxis

von Ralf Adams

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
CHF 29,30
Das umfassende Handbuch

von Wolfram Langer

eBook Download (2023)
Rheinwerk Computing (Verlag)
CHF 34,10
Das umfassende Lehrbuch

von Michael Kofler

eBook Download (2024)
Rheinwerk Computing (Verlag)
CHF 34,10