Mechanics of Biological Systems and Materials, Volume 6 (eBook)
VIII, 177 Seiten
Springer International Publishing (Verlag)
978-3-319-41351-8 (ISBN)
Mechanics of Biological Systems and Materials, Volume 6 of the Proceedings of the 2016 SEM Annual Conference & Exposition on Experimental and Applied Mechanics, the sixth volume of ten from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on a wide range of areas, including:
- Soft Material Mechanics
- Bio-Engineering and Biomechanics
- Cells Mechanics
- Biomaterials and Mechanics Across Multiple Scales
- Biomechanics
- Biotechnologies
- Traumatic Brain Injury Mechanics
Chad Korach- Stony Brook University, USA; S.A. Tekalur -Michigan State University, USA; Pablo Zavattieri - Purdue University, USA
Chad Korach- Stony Brook University, USA; S.A. Tekalur -Michigan State University, USA; Pablo Zavattieri - Purdue University, USA
Preface 6
Contents 8
Chapter 1: Mechanic Adaptability of Metastatic Cells in Colon Cancer 10
1.1 Introduction 10
1.2 Results and Discussion 11
1.3 Experimental 15
1.3.1 Cell Cultures 15
1.3.2 Scanning Electron Microscopy (SEM) 15
1.3.3 Atomic Force Microscopy (AFM) 16
1.3.4 Confocal Microscopy 16
1.3.5 Statistical Analysis 16
1.4 Conclusions 17
References 17
Chapter 2: Nano-Mechanical Response of Red Blood Cells 19
2.1 Introduction 19
2.2 Material and Methods 20
2.3 Results 20
2.4 Discussion 22
References 23
Chapter 3: Scale Dependence of the Mechanical Properties of Interfaces in Crustaceans Thin Films 25
References 31
Chapter 4: Dynamic Analysis of Human Knee 32
4.1 Introduction 32
4.2 Measurement and Analytical Methods 33
4.2.1 Test Procedure and Sensor Arrangement 33
4.2.1.1 Measurement with BiopacTM System 33
4.2.1.2 Measurement with DelsysTM System 33
4.2.2 Frequency Domain Analysis 34
4.2.3 Subjects 34
4.3 Results and Discussion 34
4.3.1 1Hz March (Subject 1 and Subject 2) 34
4.3.2 1Hz Squat (Subject 3 and Subject 4) 35
4.4 Summary 38
References 38
Chapter 5: Viscohyperelastic Calibration in Mechanical Characterization of Soft Matter 39
5.1 Introduction 39
5.2 Methodology 40
5.2.1 Determination of ZP Visco-Hyperelastic Properties 41
5.3 Results and Discussion 42
5.4 Conclusions 42
References 43
Chapter 6: Contact Zone Evaluation of Dental Implants Using Digital Photoelasticity 44
6.1 Introduction 44
6.2 Experimental Methodology 45
6.2.1 Identification of Proper Photoelastic Model for Implant Dentistry 45
6.2.2 Isochromatic Evaluation Using Three Fringe Photoelsaticity 46
6.3 Contact Zone Evaluation of the Coronal Region 46
6.3.1 Evaluation of Contact Stress Parameters Using Fringe Order Information 47
6.4 Conclusion 48
References 48
7: Evolution of the Skin Microstructural Organization During a Mechanical Assay 49
7.1 Introduction 49
7.2 Materials and Methods 50
7.2.1 Samples Preparation 50
7.2.2 Multiphoton Microscopy 50
7.2.3 Traction Device and Mechanical Assays 50
7.2.4 Mechanical Data Processing 51
7.2.5 SHG Image Processing 51
7.2.6 Theoretical Fibers Reorientation 52
7.3 Results 53
7.4 Discussion 54
References 55
8: A Numerical Study of a Biaxial Sollicitation to Set-Up the Displacement Field Measurement of Ex Vivo Mouse Skin 57
8.1 Introduction 57
8.2 Materials and Methods 58
8.2.1 Experimental Protocol 58
8.2.2 Mesh Generation 59
8.2.3 Constitutive Behavior 60
8.2.4 Sensitivity Analysis 60
8.3 Results 61
8.3.1 Sensitivity for a Real Geometry 61
8.3.2 Full-Field Measurement 61
8.4 Discussion 62
8.5 Conclusion 63
References 64
Chapter 9: Dynamic Polarization Microscopy for In-Situ Measurements of Collagen Fiber Realignment During Impact 65
9.1 Introduction 65
9.2 Methods 67
9.3 Results and Discussion 68
9.4 Conclusions 70
References 70
Chapter 10: Self-Shifting Neutral Axis and Negative Poisson´s Ratio in Hierarchical Structured Natural Composites: Bamboo 71
10.1 Introduction 71
10.2 Experiment 71
10.3 Results and Discussion 72
10.4 Conclusion 77
References 77
Chapter 11: High-Speed Holography for In-Vivo Measurement of Acoustically Induced Motions of Mammalian Tympanic Membrane 78
11.1 Introduction 78
11.2 Methods 79
11.3 Experimental Setup 80
11.4 Representative Results 81
11.4.1 Quantitative Full-Field-of-View In-Vivo Measurements 81
11.4.2 Comparison of Pre- and Post-mortem Response of the TM in the time domain 81
11.4.3 Comparison of Pre- and Post-mortem Response of the TM in the Frequency Domain 82
11.5 Conclusions and Future Work 84
References 84
Chapter 12: Rheology of Soft and Rigid Micro Particles in Curved Microfluidic Channels 85
12.1 Introduction 85
12.2 Materials and Method 86
12.3 Results and Discussion 87
12.4 Conclusion 89
References 89
Chapter 13: Microfluidic Approaches for Biomechanics of Red Blood Cells 90
13.1 Introduction 90
13.2 Microfluidic Techniques 91
13.2.1 Cellular Rheology Under Hypoxia 91
13.2.2 Electrically Coupled Cell Mechanics 92
13.3 Discussion 93
References 93
Chapter 14: Custom Indentation System for Mechanical Characterization of Soft Matter 95
14.1 Introduction 95
14.2 Methods 95
14.3 Results 97
14.4 Conclusion 97
References 99
Chapter 15: Experimental Evaluation of Blast Loadings on the Ear and Head with and Without Hearing Protection Devices 100
15.1 Introduction 100
15.2 Methods 100
15.3 Results 102
15.4 Discussion 103
15.5 Future/Ongoing Work 104
15.6 Summary 105
Reference 108
16: A Mechano-Hydraulic Model of Intracranial Pressure Dynamics 109
16.1 Introduction 109
16.2 Physiological Considerations 110
16.3 Mathematical Model 110
16.4 Model Parameters 112
16.5 Qualitative Analysis 112
16.6 Quantitative Analysis 113
16.7 Stability Analysis 114
16.8 Conclusions and Future Work 116
References 116
Chapter 17: Regional Variations in the Mechanical Strains of the Human Optic Nerve Head 117
17.1 Introduction 117
17.2 Methods 118
17.2.1 Tissue Preparation 118
17.2.2 Imaging 118
17.2.3 Mechanical Testing 119
17.2.4 Image Post-Processing 120
17.2.5 Digital Volume Correlation: (DVC) 120
17.2.6 Error Measurements and Validations 120
17.2.7 Strain Calculation 121
17.2.8 Statistics 121
17.3 Results 121
17.3.1 Imaging and Correlation Optimization 121
17.3.2 Displacements and Strains 122
17.4 Discussion 124
17.5 Conclusions 124
References 125
Chapter 18: Experimental Electromechanics of Red Blood Cells Using Dielectrophoresis-Based Microfluidics 126
18.1 Introduction 126
18.2 Materials and Method 126
18.3 Results and Discussion 128
18.4 Conclusion 129
References 130
Chapter 19: Microbuckling of Fibrous Matrices Enables Long Range Cell Mechanosensing 132
19.1 Introduction 132
19.2 Methods 133
19.2.1 Labelled Fibrin 133
19.2.2 Labelled Collagen 133
19.2.3 Image Acquisition 133
19.2.4 Digital Volume Correlation 134
19.3 Results and Discussion 134
19.4 Conclusions 137
References 137
Chapter 20: The Growth and Mechanical Properties of Abalone Nacre Mesolayer 139
20.1 Introduction 139
20.2 Experiment Procedure 140
20.3 Results 141
20.3.1 Nacre and Mesolayer Growth 141
20.3.2 Mechanical Properties Tested by Nano-Indenter 141
20.4 Conclusion 143
References 144
Chapter 21: Evaluation of Precise Optimal Cyclic Strain for Tenogenic Differentiation of MSCs 145
21.1 Introduction 145
21.2 Materials and Methods 146
21.2.1 Cell Preparation 146
21.2.2 Application of Cyclic Stretch with Inhomogeneous Strain Field 146
21.2.3 Determination of Expression Levels of Differentiation Marker Proteins 147
21.3 Results and Discussion 148
21.4 Conclusions 150
References 150
Chapter 22: Effect of FiberArchitecture on the Cell Functions of Electrospun Fiber Membranes 152
22.1 Background 152
22.2 Materials and Methods 152
22.3 Results 153
22.4 Conclusions 154
References 155
Chapter 23: Controlling hESC-CM Cell Morphology on Patterned Substrates Over a Range of Stiffness 156
23.1 Introduction 156
23.2 Methods 157
23.2.1 hESC Culture 157
23.2.2 hESC Cardiomyocyte Differentiation 157
23.2.3 Fabrication of PDMS with Varying Elastic Moduli 157
23.2.4 Mechanical Characterization 158
23.2.5 Micropattern Design and Stamp Production 158
23.2.6 muCP of omega-Mercaptoundecyl Bromoisobutyrate on Au-Coated Slides 158
23.2.7 Surface-Initiated Activator Generated by Electron Transfer Atom Transfer Radical Polymerization (SI-AGET ATRP) of OEGME... 159
23.2.8 Adsorption of Adhesion Ligands 159
23.2.9 HESC-CM Seeding and Culture 159
23.2.10 Immunofluorescence 159
23.2.11 Nuclear Alignment Measurement 160
23.3 Results and Discussion 160
23.3.1 Mechanical Properties of Different PDMS Blends 160
23.3.2 Immunofluorescence of Matrigel Transfer 160
23.3.3 Sarcomere Organization of hESC-CMs 161
23.3.4 Nuclear Alignment of hESC-CMs 162
23.4 Conclusion 162
References 163
Chapter 24: Cytoskeletal Perturbing Drugs and Their Effect on Cell Elasticity 164
24.1 Introduction 164
24.2 Methods 165
24.2.1 Cell Culture 165
24.2.2 Tubulin and Actin Visualization 165
24.2.3 Elastic Modulus Measurement at Single Approach Velocity 165
24.2.4 Approach Velocity Modulation 166
24.2.5 Force Curve Analysis 166
24.2.6 Statistical Analysis 167
24.3 Results and Discussion 167
24.3.1 Cytoarchitectural Effects of Cytochalasin D and Nocodazole 167
24.3.2 Cells Exhibit Probing Frequency Dependence 168
24.3.3 Elastic Stiffness Measurements Exhibit a log-Normal Distribution 168
24.3.4 Actin Filaments Contribute More Than Microtubules to Elastic Stiffness in Normal Cells 170
24.3.5 Destabilizing Microtubule Dynamics has a Greater Stiffness Effect in Cancer Cell Lines than Normal Cell Lines 170
24.4 Conclusions 171
References 171
Erscheint lt. Verlag | 20.9.2016 |
---|---|
Reihe/Serie | Conference Proceedings of the Society for Experimental Mechanics Series | Conference Proceedings of the Society for Experimental Mechanics Series |
Zusatzinfo | VIII, 177 p. 131 illus., 113 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik |
Medizin / Pharmazie ► Medizinische Fachgebiete ► Orthopädie | |
Technik ► Bauwesen | |
Technik ► Maschinenbau | |
Schlagworte | Bio-Engineering and Biomechanics • Cells Mechanics • Conference Proceedings of the Society for Experimental Mechanics • Natural Materials & Bio-Inspiration • Novel Techniques and Experiments in Biomechanics • Soft Tissues Mechanics • Tissue engineering |
ISBN-10 | 3-319-41351-1 / 3319413511 |
ISBN-13 | 978-3-319-41351-8 / 9783319413518 |
Haben Sie eine Frage zum Produkt? |
Größe: 11,6 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich