Optimal Control
Springer International Publishing (Verlag)
978-3-319-49780-8 (ISBN)
- Titel erscheint in neuer Auflage
- Artikel merken
In the first part of the course, the theory of linear control systems is constructed on the basis of the separation theorem and the concept of a reachability set. The authors prove the closure of a reachability set in the class of piecewise continuous controls, and the problems of controllability, observability, identification, performance and terminal control are also considered. The second part of the course is devoted to nonlinear control systems. Using the method of variations and the Lagrange multipliers rule of nonlinear problems, the authors prove the Pontryagin maximum principle for problems with mobile ends of trajectories. Further exercises and a large number of additional tasks are provided for use as practical training in order for the reader to consolidate the theoretical material.
Leonid Aschepkov is a professor in the Department of Mathematical Methods of Economy at Far Eastern Federal University. Dmitriy V. Dolgy is a professor at the Institute of Natural Sciences at Far Eastern Federal University in Vladivolstok, Russia and at Hanrimwon, Kwangwoon University in Seoul, Republic of Korea. Taekyun Kim is a professor in the Department of Mathematics at the College of Natural Science at Kwangwoon University. Ravi P. Agarwal is a professor and the chair of the Department of Mathematics at Texas A&M University.
NOTATIONS.- PREFACE.- INTRODUCTION.- 1. Subject of optimal control.- 2. Mathematical model of controlled object.- 3. Reachability set.- 4. Controllability of linear systems.- 5. Minimum time problem.- 6. Synthesis of optimal system performance.- 7. The observability problem.- 8. Identification problem.- 9. Types of optimal control problems.- 10. Small increments of a trajectory.- 11. The simplest problem of optimal control.- 12. General optimal control problem.- 13. Sufficient optimality conditions.- CONCLUSION.- APPENDIX.- EXAMPLES OF TASKS AND SOLUTIONS.- LITERATURE.
Erscheinungsdatum | 01.02.2017 |
---|---|
Zusatzinfo | XV, 209 p. 55 illus. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Informatik ► Theorie / Studium |
Mathematik / Informatik ► Mathematik ► Analysis | |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Schlagworte | Calculus of Variations • Calculus of Variations and Optimal Control • Cauchy formula • Cybernetics and systems theory • Kalman Theorem • Krasovskii Theorem • linear systems • Mathematics • mathematics and statistics • Non-linear Systems • optimal control • Optimization • Systems Theory, Control |
ISBN-10 | 3-319-49780-4 / 3319497804 |
ISBN-13 | 978-3-319-49780-8 / 9783319497808 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich