A Readable Introduction to Real Mathematics
Seiten
2016
|
Softcover reprint of the original 1st ed. 2014
Springer International Publishing (Verlag)
978-3-319-37950-0 (ISBN)
Springer International Publishing (Verlag)
978-3-319-37950-0 (ISBN)
- Titel ist leider vergriffen;
keine Neuauflage - Artikel merken
Designed for an undergraduate course or for independent study, this text presents sophisticated mathematical ideas in an elementary and friendly fashion. The fundamental purpose of this book is to engage the reader and to teach a real understanding of mathematical thinking while conveying the beauty and elegance of mathematics. The text focuses on teaching the understanding of mathematical proofs. The material covered has applications both to mathematics and to other subjects. The book contains a large number of exercises of varying difficulty, designed to help reinforce basic concepts and to motivate and challenge the reader. The sole prerequisite for understanding the text is basic high school algebra; some trigonometry is needed for Chapters 9 and 12. Topics covered include: mathematical induction - modular arithmetic - the fundamental theorem of arithmetic - Fermat's little theorem - RSA encryption - the Euclidean algorithm -rational and irrational numbers - complex numbers - cardinality - Euclidean plane geometry - constructability (including a proof that an angle of 60 degrees cannot be trisected with a straightedge and compass). This textbook is suitable for a wide variety of courses and for a broad range of students in the fields of education, liberal arts, physical sciences and mathematics. Students at the senior high school level who like mathematics will also be able to further their understanding of mathematical thinking by reading this book.
Daniel Rosenthal is a mathematics student at the University of Toronto. David Rosenthal is Associate Professor of Mathematics at St. John's University in New York City. Peter Rosenthal is Professor Emeritus of Mathematics at the University of Toronto.
1. Introduction to the Natural Numbers.- 2. Mathematical Induction.- 3. Modular Arithmetic.- 4. The Fundamental Theorem of Arithmetic.- 5. Fermat's Theorem and Wilson's Theorem.- 6. Sending and Receiving Coded Messages.- 7. The Euclidean Algorithm and Applications.- 8. Rational Numbers and Irrational Numbers.- 9. The Complex Numbers.- 10. Sizes of Infinite Sets.- 11. Fundamentals of Euclidean Plane Geometry.- 12. Constructability.
Erscheinungsdatum | 23.09.2016 |
---|---|
Reihe/Serie | Undergraduate Texts in Mathematics |
Zusatzinfo | XII, 161 p. 50 illus. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Schlagworte | Cardinality • complex numbers • Fermat's Theorem • Geometry • Mathematical Induction • Mathematics • mathematics and statistics • mathematics, general • natural numbers • Number Theory • RSA method • trisection of angles |
ISBN-10 | 3-319-37950-X / 331937950X |
ISBN-13 | 978-3-319-37950-0 / 9783319379500 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Sieben ausgewählte Themenstellungen
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 89,95
unlock your imagination with the narrative of numbers
Buch | Softcover (2024)
Advantage Media Group (Verlag)
CHF 27,90
Seltsame Mathematik - Enigmatische Zahlen - Zahlenzauber
Buch | Softcover (2024)
BoD – Books on Demand (Verlag)
CHF 27,95