Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Computational Complexity of Counting and Sampling - Istvan Miklos

Computational Complexity of Counting and Sampling

(Autor)

Buch | Softcover
408 Seiten
2019
CRC Press (Verlag)
978-1-138-03557-7 (ISBN)
CHF 149,95 inkl. MwSt
The purpose of the book is to give a comprehensive and detailed introduction to the computational
complexity of counting and sampling. The book consists of three main topics: I. Counting problems that are solvable in polynomial running time, II. Approximation algorithms for counting and sampling, III. Holographic algorithms.
Computational Complexity of Counting and Sampling provides readers with comprehensive and detailed coverage of the subject of computational complexity. It is primarily geared toward researchers in enumerative combinatorics, discrete mathematics, and theoretical computer science.

The book covers the following topics: Counting and sampling problems that are solvable in polynomial running time, including holographic algorithms; #P-complete counting problems; and approximation algorithms for counting and sampling.

First, it opens with the basics, such as the theoretical computer science background and dynamic programming algorithms. Later, the book expands its scope to focus on advanced topics, like stochastic approximations of counting discrete mathematical objects and holographic algorithms. After finishing the book, readers will agree that the subject is well covered, as the book starts with the basics and gradually explores the more complex aspects of the topic.

Features:






Each chapter includes exercises and solutions



Ideally written for researchers and scientists



Covers all aspects of the topic, beginning with a solid introduction, before shifting to computational complexity’s more advanced features, with a focus on counting and sampling

István Miklós is a Hungarian mathematician and bioinformatician at the Rényi Institute in Budapest. He holds a Ph.D. from Eotvos University in Budapest. His research interests lie in theoretical and applied computer science and combinatorics, particularly in the study of Markov chain, Monte Carlo methods and in sampling and counting combinatorial objects appearing in applied mathematics. He has more than 50 peer-reviewed scientific papers.

1. Background on computational complexity
2. Algebraic dynamic programming and monotone computations
3. Linear algebraic algorithms. The power of subtracting
4. #P-complete counting problems
5. Holographic algorithms
6. Methods of random generations
7. Mixing of Markov chains and their applications in the theory of
counting and sampling
8. Approximable counting and sampling problems

Erscheinungsdatum
Reihe/Serie Discrete Mathematics and Its Applications
Zusatzinfo 3 Tables, black and white; 34 Illustrations, black and white
Verlagsort London
Sprache englisch
Maße 156 x 234 mm
Gewicht 544 g
Themenwelt Informatik Theorie / Studium Algorithmen
Mathematik / Informatik Mathematik Graphentheorie
ISBN-10 1-138-03557-2 / 1138035572
ISBN-13 978-1-138-03557-7 / 9781138035577
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
IT zum Anfassen für alle von 9 bis 99 – vom Navi bis Social Media

von Jens Gallenbacher

Buch | Softcover (2021)
Springer (Verlag)
CHF 41,95
Interlingua zur Gewährleistung semantischer Interoperabilität in der …

von Josef Ingenerf; Cora Drenkhahn

Buch | Softcover (2023)
Springer Fachmedien (Verlag)
CHF 46,15