Machine Learning for the Web (eBook)
298 Seiten
Packt Publishing (Verlag)
978-1-78588-872-4 (ISBN)
Explore the web and make smarter predictions using Python
About This Book
- Targets two big and prominent markets where sophisticated web apps are of need and importance.
- Practical examples of building machine learning web application, which are easy to follow and replicate.
- A comprehensive tutorial on Python libraries and frameworks to get you up and started.
Who This Book Is For
The book is aimed at upcoming and new data scientists who have little experience with machine learning or users who are interested in and are working on developing smart (predictive) web applications. Knowledge of Django would be beneficial. The reader is expected to have a background in Python programming and good knowledge of statistics.
What You Will Learn
- Get familiar with the fundamental concepts and some of the jargons used in the machine learning community
- Use tools and techniques to mine data from websites
- Grasp the core concepts of Django framework
- Get to know the most useful clustering and classification techniques and implement them in Python
- Acquire all the necessary knowledge to build a web application with Django
- Successfully build and deploy a movie recommendation system application using the Django framework in Python
In Detail
Python is a general purpose and also a comparatively easy to learn programming language. Hence it is the language of choice for data scientists to prototype, visualize, and run data analyses on small and medium-sized data sets. This is a unique book that helps bridge the gap between machine learning and web development. It focuses on the difficulties of implementing predictive analytics in web applications. We focus on the Python language, frameworks, tools, and libraries, showing you how to build a machine learning system. You will explore the core machine learning concepts and then develop and deploy the data into a web application using the Django framework. You will also learn to carry out web, document, and server mining tasks, and build recommendation engines. Later, you will explore Python's impressive Django framework and will find out how to build a modern simple web app with machine learning features.
Style and approach
Instead of being overwhelmed with multiple concepts at once, this book provides a step-by-step approach that will guide you through one topic at a time.
An intuitive step-by step guide that will focus on one key topic at a time. Building upon the acquired knowledge in each chapter, we will connect the fundamental theory and practical tips by illustrative visualizations and hands-on code examples.
Explore the web and make smarter predictions using PythonAbout This BookTargets two big and prominent markets where sophisticated web apps are of need and importance.Practical examples of building machine learning web application, which are easy to follow and replicate.A comprehensive tutorial on Python libraries and frameworks to get you up and started.Who This Book Is ForThe book is aimed at upcoming and new data scientists who have little experience with machine learning or users who are interested in and are working on developing smart (predictive) web applications. Knowledge of Django would be beneficial. The reader is expected to have a background in Python programming and good knowledge of statistics.What You Will LearnGet familiar with the fundamental concepts and some of the jargons used in the machine learning communityUse tools and techniques to mine data from websitesGrasp the core concepts of Django frameworkGet to know the most useful clustering and classification techniques and implement them in PythonAcquire all the necessary knowledge to build a web application with DjangoSuccessfully build and deploy a movie recommendation system application using the Django framework in PythonIn DetailPython is a general purpose and also a comparatively easy to learn programming language. Hence it is the language of choice for data scientists to prototype, visualize, and run data analyses on small and medium-sized data sets. This is a unique book that helps bridge the gap between machine learning and web development. It focuses on the difficulties of implementing predictive analytics in web applications. We focus on the Python language, frameworks, tools, and libraries, showing you how to build a machine learning system. You will explore the core machine learning concepts and then develop and deploy the data into a web application using the Django framework. You will also learn to carry out web, document, and server mining tasks, and build recommendation engines. Later, you will explore Python's impressive Django framework and will find out how to build a modern simple web app with machine learning features.Style and approachInstead of being overwhelmed with multiple concepts at once, this book provides a step-by-step approach that will guide you through one topic at a time.An intuitive step-by step guide that will focus on one key topic at a time. Building upon the acquired knowledge in each chapter, we will connect the fundamental theory and practical tips by illustrative visualizations and hands-on code examples.
Erscheint lt. Verlag | 29.7.2016 |
---|---|
Sprache | englisch |
Themenwelt | Informatik ► Datenbanken ► Data Warehouse / Data Mining |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
ISBN-10 | 1-78588-872-2 / 1785888722 |
ISBN-13 | 978-1-78588-872-4 / 9781785888724 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 21,7 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich