Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Realtime Data Mining - Alexander Paprotny, Michael Thess

Realtime Data Mining

Self-Learning Techniques for Recommendation Engines
Buch | Softcover
XXIII, 313 Seiten
2016 | 1. Softcover reprint of the original 1st ed. 2013
Springer International Publishing (Verlag)
978-3-319-34445-4 (ISBN)
CHF 127,30 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken

Describing novel mathematical concepts for recommendation engines, Realtime Data Mining: Self-Learning Techniques for Recommendation Engines features a sound mathematical framework unifying approaches based on control and learning theories, tensor factorization, and hierarchical methods. Furthermore, it presents promising results of numerous experiments on real-world data. The area of realtime data mining is currently developing at an exceptionally dynamic pace, and realtime data mining systems are the counterpart of today's "classic" data mining systems. Whereas the latter learn from historical data and then use it to deduce necessary actions, realtime analytics systems learn and act continuously and autonomously. In the vanguard of these new analytics systems are recommendation engines. They are principally found on the Internet, where all information is available in realtime and an immediate feedback is guaranteed.

This monograph appeals to computer scientists and specialists in machine learning, especially from the area of recommender systems, because it conveys a new way of realtime thinking by considering recommendation tasks as control-theoretic problems. Realtime Data Mining: Self-Learning Techniques for Recommendation Engines will also interest application-oriented mathematicians because it consistently combines some of the most promising mathematical areas, namely control theory, multilevel approximation, and tensor factorization.

1 Brave New Realtime World - Introduction.- 2 Strange Recommendations? - On The Weaknesses Of Current Recommendation Engines.- 3 Changing Not Just Analyzing - Control Theory And Reinforcement Learning.- 4 Recommendations As A Game - Reinforcement Learning For Recommendation Engines.- 5 How Engines Learn To Generate Recommendations - Adaptive Learning Algorithms.- 6 Up The Down Staircase - Hierarchical Reinforcement Learning.- 7 Breaking Dimensions - Adaptive Scoring With Sparse Grids.- 8 Decomposition In Transition - Adaptive Matrix Factorization.- 9 Decomposition In Transition Ii - Adaptive Tensor Factorization.- 10 The Big Picture - Towards A Synthesis Of Rl And Adaptive Tensor Factorization.- 11 What Cannot Be Measured Cannot Be Controlled - Gauging Success With A/B Tests.- 12 Building A Recommendation Engine - The Xelopes Library.- 13 Last Words - Conclusion.- References.- Summary Of Notation.

Erscheinungsdatum
Reihe/Serie Applied and Numerical Harmonic Analysis
Zusatzinfo XXIII, 313 p. 100 illus., 88 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Computerprogramme / Computeralgebra
Schlagworte Collaborative Filtering • computational science and engineering • hierarchical methods • Markov decision process • Mathematical and statistical software • Mathematical Applications in Computer Science • Mathematical Modelling • mathematical software • mathematics and statistics • Maths for scientists • real-time analysis • Recommendation Systems • Reinforcement Learning
ISBN-10 3-319-34445-5 / 3319344455
ISBN-13 978-3-319-34445-4 / 9783319344454
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Grundlagen – Anwendungen – Perspektiven

von Matthias Homeister

Buch | Softcover (2022)
Springer Vieweg (Verlag)
CHF 48,95
was jeder über Informatik wissen sollte

von Timm Eichstädt; Stefan Spieker

Buch | Softcover (2024)
Springer Vieweg (Verlag)
CHF 53,15
Eine Einführung in die Systemtheorie

von Margot Berghaus

Buch | Softcover (2022)
UTB (Verlag)
CHF 34,95