Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Axiomatic Method and Category Theory - Andrei Rodin

Axiomatic Method and Category Theory

(Autor)

Buch | Softcover
XI, 285 Seiten
2016 | 1. Softcover reprint of the original 1st ed. 2014
Springer International Publishing (Verlag)
978-3-319-37551-9 (ISBN)
CHF 194,70 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This volume offers readers a coherent look at the past, present and anticipated future of the Axiomatic Method. It presents a hypothetical New Axiomatic Method, which establishes closer relationships between mathematics and physics.

This volume explores the many different meanings of the notion of the axiomatic method, offering an insightful historical and philosophical discussion about how these notions changed over the millennia.

The author, a well-known philosopher and historian of mathematics, first examines Euclid, who is considered the father of the axiomatic method, before moving onto Hilbert and Lawvere. He then presents a deep textual analysis of each writer and describes how their ideas are different and even how their ideas progressed over time. Next, the book explores category theory and details how it has revolutionized the notion of the axiomatic method. It considers the question of identity/equality in mathematics as well as examines the received theories of mathematical structuralism. In the end, Rodin presents a hypothetical New Axiomatic Method, which establishes closer relationships between mathematics and physics.

Lawvere's axiomatization of topos theory and Voevodsky's axiomatization of higher homotopy theory exemplify a new way of axiomatic theory building, which goes beyond the classical Hilbert-style Axiomatic Method. The new notion of Axiomatic Method that emerges in categorical logic opens new possibilities for using this method in physics and other natural sciences.

This volume offers readers a coherent look at the past, present and anticipated future of the Axiomatic Method.

Introduction.- Part I A Brief History of the Axiomatic Method.- Chapter 1. Euclid: Doing and Showing.- Chapter 2. Hilbert: Making It Formal.- Chapter 3. Formal Axiomatic Method and the 20th Century Mathematics.- Chapter. 4 Lawvere: Pursuit of Objectivity.- Conclusion of Part 1.- Part II. Identity and Categorification.- Chapter 5. Identity in Classical and Constructive Mathematics.- Chapter 6. Identity Through Change, Category Theory and Homotopy Theory.- Conclusion of Part 2.- Part III. Subjective Intuitions and Objective Structures.- Chapter 7. How Mathematical Concepts Get Their Bodies. Chapter 8. Categories versus Structures.- Chapter 9. New Axiomatic Method (instead of conclusion).- Bibliography.

Erscheinungsdatum
Reihe/Serie Synthese Library
Zusatzinfo XI, 285 p. 63 illus.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Geisteswissenschaften Philosophie Allgemeines / Lexika
Geisteswissenschaften Philosophie Erkenntnistheorie / Wissenschaftstheorie
Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Logik / Mengenlehre
Schlagworte Algebra • categorical logic • Category Theory, Homological Algebra • David Hilbert • Epistemology • Homotopy Type theory • Mathematical Foundations • Mathematical Logic • Mathematical Logic and Foundations • Mathematical structuralism • Philosophy: epistemology and theory of knowledge • Religion and Philosophy • topos theory • Univalent Foundations of Mathematics • Vladimir Voevodsky • William Lawvere
ISBN-10 3-319-37551-2 / 3319375512
ISBN-13 978-3-319-37551-9 / 9783319375519
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
die letzten Jahre der Philosophie und der Beginn einer neuen …

von Wolfram Eilenberger

Buch | Hardcover (2024)
Klett-Cotta (Verlag)
CHF 39,20
Jenseits von Identität | Ausgezeichnet mit dem Leipziger Buchpreis …

von Omri Boehm

Buch | Softcover (2023)
Ullstein Taschenbuch Verlag
CHF 19,55