Symbol Correspondences for Spin Systems
Springer International Publishing (Verlag)
978-3-319-35811-6 (ISBN)
Preface.- 1 Introduction.- 2 Preliminaries.- 3 Quantum Spin Systems and Their Operator Algebras.- 4 The Poisson Algebra of the Classical Spin System.- 5 Intermission.- 6 Symbol Correspondences for a Spin-j System.- 7 Multiplications of Symbols on the 2-Sphere.- 8 Beginning Asymptotic Analysis of Twisted Products.- 9 Conclusion.- Appendix.- Bibliography.- Index.
From the book reviews:
"This book constitutes an interesting and highly useful monograph devoted to symbol correspondences, that will help the reader to better understand the existing relation between classical and quantum mechanics. For the particular case of physicists, this work will clarify the mathematical context and formalism that is not usually presented with such an amount of detail in other books on the subject. ... This book is highly recommended to the specialist as well as to the non-specialist interested on spin systems." (Rutwig Campoamor-Stursberg, zbMATH, Vol. 1305, 2015)
Erscheinungsdatum | 29.08.2016 |
---|---|
Zusatzinfo | IX, 200 p. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Schlagworte | Algebra • dequantization • Differential and Riemannian geometry • Differential Geometry • Groups and group theory • mathematics and statistics • non-associative rings and algebras • Poisson algebra on the two sphere • quantum-classical symbol correspondences • Quantum Physics • Quantum physics (quantum mechanics and quantum fie • semiclassical asymptotic limit • SU(2)-invariant quantum systems • Topological Groups, Lie Groups • twisted products |
ISBN-10 | 3-319-35811-1 / 3319358111 |
ISBN-13 | 978-3-319-35811-6 / 9783319358116 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich