Mathematical and Statistical Modeling for Emerging and Re-emerging Infectious Diseases (eBook)
IX, 356 Seiten
Springer-Verlag
978-3-319-40413-4 (ISBN)
The contributions by epidemic modeling experts describe how mathematical models and statistical forecasting are created to capture the most important aspects of an emerging epidemic.Readers will discover a broad range of approaches to address questions, such as
- Can we control Ebola via ring vaccination strategies?
- How quickly should we detect Ebola cases to ensure epidemic control?
- What is the likelihood that an Ebola epidemic in West Africa leads to secondary outbreaks in other parts of the world?
- When does it matter to incorporate the role of disease-induced mortality on epidemic models?
- What is the role of behavior changes on Ebola dynamics?
- How can we better understand the control of cholera or Ebola using optimal control theory?
- How should a population be structured in order to mimic the transmission dynamics of diseases such as chlamydia, Ebola, or cholera?
- How can we objectively determine the end of an epidemic?
- How can we use metapopulation models to understand the role of movement restrictions and migration patterns on the spread of infectious diseases?
- How can we capture the impact of household transmission using compartmental epidemic models?
- How could behavior-dependent vaccination affect the dynamical outcomes of epidemic models?
This book will be of interest to researchers in the field of mathematical epidemiology, as well as public health workers.
Gerardo Chowell is an associate professor and a Second Century Initiative Scholar (2CI) in the School of Public Health at Georgia State University in Atlanta. His research program includes the development and application of quantitative approaches for understanding the transmission dynamics and control of infectious diseases including influenza, Ebola, and dengue fever. His work has appeared in high-impact journals including The New England Journal of Medicine, PLOS Medicine, and BMC Medicine, and has been cited by major media outlets including the Washington Post and TIME magazine.
James (Mac) Hyman has developed and analyzed mathematical models for the transmission of HIV/AIDs, influenza, malaria, dengue fever, chikungunya, and infections. His current focus is to identify approaches where these models can help public health workers be more effective in mitigating the impact of emerging diseases. He was a research scientist at Los Alamos National Laboratory for over thirty years, is a past president of the Society for Industrial and Applied Mathematics (SIAM), and now holds the Phillips Distinguished Chair in Mathematics at Tulane University.Gerardo Chowell is an associate professor and a Second Century Initiative Scholar (2CI) in the School of Public Health at Georgia State University in Atlanta. His research program includes the development and application of quantitative approaches for understanding the transmission dynamics and control of infectious diseases including influenza, Ebola, and dengue fever. His work has appeared in high-impact journals including The New England Journal of Medicine, PLOS Medicine, and BMC Medicine, and has been cited by major media outlets including the Washington Post and TIME magazine.James (Mac) Hyman has developed and analyzed mathematical models for the transmission of HIV/AIDs, influenza, malaria, dengue fever, chikungunya, and infections. His current focus is to identify approaches where these models can help public health workers be more effective in mitigating the impact of emerging diseases. He was a research scientist at Los Alamos National Laboratory for over thirty years, is a past president of the Society for Industrial and Applied Mathematics (SIAM), and now holds the Phillips Distinguished Chair in Mathematics at Tulane University.
Preface1 A Reality of Its Own3 Modeling the Impact of Behavior Change on the Spread of Ebola3 A model for coupled outbreaks contained by behavior change4 Real-time assessment of the international spreading risk associated with the 2014 West African Ebola Outbreak5 Modeling the case of early detection of Ebola virus disease6 Modeling ring vaccination strategies to control Ebola virus disease epidemics7 Estimation of the number of sickbeds during Ebola epidemics using optimal control theory8 Inverse problems and Ebola virus disease using an age of infection model9 Assessing the Efficiency of Movement10 Restriction as a Control Strategy of Ebola11 Patch models of EVD transmission dynamics12 From bee species aggregation to models of disease avoidance: The /emph{Ben-Hur} effect}13 Designing Public Health Policies to Mitigate the Adverse Consequences of Rural-Urban Migration via Meta-Population Modeling14 Age of Infection Epidemic Models15 Optimal Control of Vaccination in an Age-Structured Cholera Model16 A Multi-risk Model for Understanding the Spread of Chlamydia17 The 1997 Measles Outbreak in Metropolitan São Paulo, Brazil: Strategic Implications of Increasing Urbanization18 Methods to determine the end of an infectious disease epidemic: A short review19 Statistical considerations in infectious disease randomized controlled trials20 Epidemic models with and without mortality: when does it matter?21 Capturing Household Transmission in Compartmental Models of Infectious Disease22 Bistable endemic states in a Susceptible-Infectious-Susceptible model with behavior-dependent VaccinationIndex
Erscheint lt. Verlag | 27.7.2016 |
---|---|
Zusatzinfo | IX, 356 p. 94 illus., 63 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik |
Medizin / Pharmazie ► Allgemeines / Lexika | |
Schlagworte | Emerging infectious diseases • Epidemic • Epidemic forecasting • Infectious disease dynamics • Infectious Diseases • Mathematical Modeling • Statistical Inference |
ISBN-10 | 3-319-40413-X / 331940413X |
ISBN-13 | 978-3-319-40413-4 / 9783319404134 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
![PDF](/img/icon_pdf_big.jpg)
Größe: 11,7 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich