Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Introduction to G-Functions. (AM-133), Volume 133 (eBook)

eBook Download: PDF
2016
352 Seiten
Princeton University Press (Verlag)
978-1-4008-8254-0 (ISBN)

Lese- und Medienproben

Introduction to G-Functions. (AM-133), Volume 133 -  Bernard Dwork,  Giovanni Gerotto,  Francis J. Sullivan
391,95 € (CHF 379,95)
Systemvoraussetzungen
129,99 € (CHF 126,95)
Systemvoraussetzungen
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen


Bernard Dwork is Professor of Mathematics at Princeton University. Giovanni Gerotto and Francis J. Sullivan are Associate Professors of Mathematics at the University of Padova.
Written for advanced undergraduate and first-year graduate students, this book aims to introduce students to a serious level of p-adic analysis with important implications for number theory. The main object is the study of G-series, that is, power series y=aij=0 Ajxj with coefficients in an algebraic number field K. These series satisfy a linear differential equation Ly=0 with LIK(x) [d/dx] and have non-zero radii of convergence for each imbedding of K into the complex numbers. They have the further property that the common denominators of the first s coefficients go to infinity geometrically with the index s. After presenting a review of valuation theory and elementary p-adic analysis together with an application to the congruence zeta function, this book offers a detailed study of the p-adic properties of formal power series solutions of linear differential equations. In particular, the p-adic radii of convergence and the p-adic growth of coefficients are studied. Recent work of Christol, Bombieri, Andre, and Dwork is treated and augmented. The book concludes with Chudnovsky's theorem: the analytic continuation of a G -series is again a G -series. This book will be indispensable for those wishing to study the work of Bombieri and Andre on global relations and for the study of the arithmetic properties of solutions of ordinary differential equations.

Bernard Dwork is Professor of Mathematics at Princeton University. Giovanni Gerotto and Francis J. Sullivan are Associate Professors of Mathematics at the University of Padova.

Erscheint lt. Verlag 2.3.2016
Reihe/Serie Annals of Mathematics Studies
Annals of Mathematics Studies
Zusatzinfo 22 figs.
Verlagsort Princeton
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
Schlagworte Adjoint • Algebraically closed field • algebraic closure • Algebraic Method • algebraic number field • algebraic number theory • algebraic variety • analytic continuation • analytic function • Argument principle • arithmetic • automorphism • Bearing (navigation) • Binomial series • Calculation • Cardinality • Cartesian coordinate system • Cauchy Sequence • Cauchy's theorem (geometry) • coefficient • cohomology • Commutative Ring • complete intersection • Complex Analysis • conjecture • Density theorem • differential equation • Dimension (vector space) • direct sum • discrete valuation • Eigenvalues and Eigenvectors • Elliptic Curve • Equation • equivalence class • estimation • existential quantification • exponential function • Exterior algebra • Field of fractions • finite field • Formal power series • Fuchs' theorem • Galois extension • Galois group • general linear group • Generic point • Geometry • G-module • hypergeometric function • Identity matrix • Inequality (mathematics) • Intercept method • Irreducible element • irreducible polynomial • Laurent Series • Limit of a sequence • linear differential equation • Lowest common denominator • Mathematical Induction • Meromorphic Function • modular arithmetic • Module (mathematics) • Monodromy • Monotonic Function • Multiplicative group • Natural number • Newton Polygon • Number Theory • P-adic number • Parameter • Permutation • Polygon • polynomial • Projective line • Q.E.D. • Quadratic residue • radius of convergence • rational function • Rational number • residue field • Riemann hypothesis • Ring of integers • Root of unity • Separable polynomial • Sequence • Siegel's lemma • Special case • square root • Subring • Subset • Summation • Theorem • Topology of uniform convergence • transpose • Triangle Inequality • Unipotent • Valuation ring • Weil conjecture • Wronskian • Y-intercept
ISBN-10 1-4008-8254-0 / 1400882540
ISBN-13 978-1-4008-8254-0 / 9781400882540
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 15,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich