Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Design, Analysis, and Interpretation of Genome-Wide Association Scans - Daniel O. Stram

Design, Analysis, and Interpretation of Genome-Wide Association Scans

(Autor)

Buch | Softcover
334 Seiten
2016 | Softcover reprint of the original 1st ed. 2014
Springer-Verlag New York Inc.
978-1-4939-4952-6 (ISBN)
CHF 194,70 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This book presents the statistical aspects of designing, analyzing and interpreting the results of genome-wide association scans (GWAS studies) for genetic causes of disease using unrelated subjects. Particular detail is given to the practical aspects of employing the bioinformatics and data handling methods necessary to prepare data for statistical analysis. The goal in writing this book is to give statisticians, epidemiologists, and students in these fields the tools to design a powerful genome-wide study based on current technology. The other part of this is showing readers how to conduct analysis of the created study.

Design and Analysis of Genome-Wide Association Studies provides a compendium of well-established statistical methods based upon single SNP associations. It also provides an introduction to more advanced statistical methods and issues. Knowing that technology, for instance large scale SNP arrays, is quickly changing, this text has significant lessons for future use with sequencing data. Emphasis on statistical concepts that apply to the problem of finding disease associations irrespective of the technology ensures its future applications. The author includes current bioinformatics tools while outlining the tools that will be required for use with extensive databases from future large scale sequencing projects. The author includes current bioinformatics tools while outlining additional issues and needs arising from the extensive databases from future large scale sequencing projects.

Dr. Stram’s interests center on the application of modern statistical methods to epidemiologic studies: his research includes methods in longitudinal analysis, meta-analysis, survival analysis, and the analysis of errors in exposure measurement and he is well known for his work on the Atomic Bomb survivors study, the Colorado Plateau Uranium Miners study, the Multiethnic Cohort study and on clinical trials of childhood cancer. He has been an investigator and collaborator on many large scale genetic association studies with an emphasis on multi-ethnic analyses, and has published widely on haplotype analysis, analysis of hidden population structure, and the design of multi-stage genotyping and genome-wide association studies.

​Introduction to Genome-Wide Association Studies.- Topics of Quantitative Genetics.- An Introduction to Association Studies.- Correcting for Hidden Population Structure in Single Marker Association Testing and Estimation.- Haplotype Imputation for Association Analysis.- SNP Imputation for Association Studies.- Design of Large-scale Genetic Association Studies, Sample Size and Power.- Post-GWAS Analyses.

Erscheinungsdatum
Reihe/Serie Statistics for Biology and Health
Zusatzinfo 39 Illustrations, black and white; XV, 334 p. 39 illus.
Verlagsort New York
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Studium 2. Studienabschnitt (Klinik) Humangenetik
Studium Querschnittsbereiche Epidemiologie / Med. Biometrie
Schlagworte Biostatistics • Genetic disease variation • genome studies • GWAS studies • Risk prediction • Statistics in public health
ISBN-10 1-4939-4952-7 / 1493949527
ISBN-13 978-1-4939-4952-6 / 9781493949526
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine sehr persönliche Geschichte | Der New York Times-Bestseller

von Siddhartha Mukherjee

Buch | Softcover (2023)
Ullstein Taschenbuch Verlag
CHF 30,75
Die revolutionäre Medizin von morgen (Lifespan)

von David A. Sinclair; Matthew D. LaPlante

Buch | Softcover (2020)
DuMont Buchverlag
CHF 22,40