Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Polygons, Polyominoes and Polycubes -

Polygons, Polyominoes and Polycubes

A. J. Guttmann (Herausgeber)

Buch | Softcover
490 Seiten
2016 | Softcover Reprint of the Original 1st 2009 ed.
Springer (Verlag)
978-94-017-7712-4 (ISBN)
CHF 149,70 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
The problem of counting the number of self-avoiding polygons on a square grid, - therbytheirperimeterortheirenclosedarea,is aproblemthatis soeasytostate that, at ?rst sight, it seems surprising that it hasn’t been solved. It is however perhaps the simplest member of a large class of such problems that have resisted all attempts at their exact solution. These are all problems that are easy to state and look as if they should be solvable. They include percolation, in its various forms, the Ising model of ferromagnetism, polyomino enumeration, Potts models and many others. These models are of intrinsic interest to mathematicians and mathematical physicists, but can also be applied to many other areas, including economics, the social sciences, the biological sciences and even to traf?c models. It is the widespread applicab- ity of these models to interesting phenomena that makes them so deserving of our attention. Here however we restrict our attention to the mathematical aspects. Here we are concerned with collecting together most of what is known about polygons, and the closely related problems of polyominoes. We describe what is known, taking care to distinguish between what has been proved, and what is c- tainlytrue,but has notbeenproved. Theearlierchaptersfocusonwhatis knownand on why the problems have not been solved, culminating in a proof of unsolvability, in a certain sense. The next chapters describe a range of numerical and theoretical methods and tools for extracting as much information about the problem as possible, in some cases permittingexactconjecturesto be made.

History and Introduction to Polygon Models and Polyominoes.- Lattice Polygons and Related Objects.- Exactly Solved Models.- Why Are So Many Problems Unsolved?.- The Anisotropic Generating Function of Self-Avoiding Polygons is not D-Finite.- Polygons and the Lace Expansion.- Exact Enumerations.- Series Analysis.- Monte Carlo Methods for Lattice Polygons.- Effect of Confinement: Polygons in Strips, Slabs and Rectangles.- Limit Distributions and Scaling Functions.- Interacting Lattice Polygons.- Fully Packed Loop Models on Finite Geometries.- Conformal Field Theory Applied to Loop Models.- Stochastic Lowner Evolution and the Scaling Limit of Critical Models.- Appendix: Series Data and Growth Constant, Amplitude and Exponent Estimates.

Erscheinungsdatum
Reihe/Serie Lecture Notes in Physics ; 775
Zusatzinfo XIX, 490 p.
Verlagsort Dordrecht
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Theorie / Studium Algorithmen
Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Graphentheorie
Naturwissenschaften Biologie Evolution
Naturwissenschaften Chemie
Naturwissenschaften Physik / Astronomie Allgemeines / Lexika
Naturwissenschaften Physik / Astronomie Theoretische Physik
Naturwissenschaften Physik / Astronomie Thermodynamik
ISBN-10 94-017-7712-8 / 9401777128
ISBN-13 978-94-017-7712-4 / 9789401777124
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
IT zum Anfassen für alle von 9 bis 99 – vom Navi bis Social Media

von Jens Gallenbacher

Buch | Softcover (2021)
Springer (Verlag)
CHF 41,95
Interlingua zur Gewährleistung semantischer Interoperabilität in der …

von Josef Ingenerf; Cora Drenkhahn

Buch | Softcover (2023)
Springer Fachmedien (Verlag)
CHF 46,15