Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Für diesen Artikel ist leider kein Bild verfügbar.

Practical Propensity Score Methods Using R

(Autor)

Buch | Softcover
224 Seiten
2017
SAGE Publications Inc (Verlag)
978-1-4522-8888-8 (ISBN)
CHF 139,95 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This practical book uses a step-by-step analysis of realistic examples to help students understand the theory and code for implementing propensity score analysis with the R statistical language. 
This practical book uses a step-by-step analysis of realistic examples to help students understand the theory and code for implementing propensity score analysis with the R statistical language. With a comparison of both well-established and cutting-edge propensity score methods, the text highlights where solid guidelines exist to support best practices and where there is scarcity of research. Readers will find that this scaffolded approach to R and the book’s free online resources help them apply the text’s concepts to the analysis of their own data. 

Preface
Acknowledgments
About the Author
Chapter 1. Overview of Propensity Score Analysis
Learning Objectives
1.1 Introduction
1.2 Rubin’s Causal Model
1.3 Campbell’s Framework
1.4 Propensity Scores
1.5 Description of Example
1.6 Steps of Propensity Score Analysis
1.7 Propensity Score Analysis With Complex Survey Data
1.8 Resources for Learning R
1.9 Conclusion
Study Questions
Chapter 2. Propensity Score Estimation
Learning Objectives
2.1 Introduction
2.2 Description of Example
2.3 Selection of Covariates
2.4 Dealing With Missing Data
2.5 Methods for Propensity Score Estimation
2.6 Evaluation of Common Support
2.7 Conclusion
Study Questions
Chapter 3. Propensity Score Weighting
Learning Objectives
3.1 Introduction
3.2 Description of Example
3.3 Calculation of Weights
3.4 Covariate Balance Check
3.5 Estimation of Treatment Effects With Propensity Score Weighting
3.6 Propensity Score Weighting With Multiple Imputed Data Sets
3.7 Doubly Robust Estimation of Treatment Effect With Propensity Score Weighting
3.8 Sensitivity Analysis
3.9 Conclusion
Study Questions
Chapter 4. Propensity Score Stratification
Learning Objectives
4.1 Introduction
4.2 Description of Example
4.3 Propensity Score Estimation
4.4 Propensity Score Stratification
4.5 Marginal Mean Weighting Through Stratification
4.6 Conclusion
Study Questions
Chapter 5. Propensity Score Matching
Learning Objectives
5.1 Introduction
5.2 Description of Example
5.3 Propensity Score Estimation
5.4 Propensity Score Matching Algorithms
5.5 Evaluation of Covariate Balance
5.6 Estimation of Treatment Effects
5.7 Sensitivity Analysis
5.8 Conclusion
Study Questions
Chapter 6. Propensity Score Methods for Multiple Treatments
Learning Objectives
6.1 Introduction
6.2 Description of Example
6.3 Estimation of Generalized Propensity Scores With Multinomial Logistic Regression
6.4 Estimation of Generalized Propensity Scores With Data Mining Methods
6.5 Propensity Score Weighting for Multiple Treatments
6.6 Estimation of Treatment Effect of Multiple Treatments
6.7 Conclusion
Study Questions
Chapter 7. Propensity Score Methods for Continuous Treatment Doses
Learning Objectives
7.1 Introduction
7.2 Description of Example
7.3 Generalized Propensity Scores
7.4 Inverse Probability Weighting
7.5 Conclusion
Study Questions
Chapter 8. Propensity Score Analysis With Structural Equation Models
Learning Objectives
8.1 Introduction
8.2 Description of Example
8.3 Latent Confounding Variables
8.4 Estimation of Propensity Scores
8.5 Propensity Score Methods
8.6 Treatment Effect Estimation With Multiple-Group Structural Equation Models
8.7 Treatment Effect Estimation With Multiple-Indicator and Multiple-Causes Models
8.8 Conclusion
Study Questions
Chapter 9. Weighting Methods for Time-Varying Treatments
Learning Objectives
9.1 Introduction
9.2 Description of Example
9.3 Inverse Probability of Treatment Weights
9.4 Stabilized Inverse Probability of Treatment Weights
9.5 Evaluation of Covariate Balance
9.6 Estimation of Treatment Effects
9.7 Conclusion
Study Questions
Chapter 10. Propensity Score Methods With Multilevel Data
Learning Objectives
10.1 Introduction
10.2 Description of Example
10.3 Estimation of Propensity Scores With Multilevel Data
10.4 Propensity Score Weighting
10.5 Treatment Effect Estimation
10.6 Conclusion
Study Questions
References
Index

Erscheinungsdatum
Verlagsort Thousand Oaks
Sprache englisch
Maße 187 x 231 mm
Gewicht 430 g
Themenwelt Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Sozialwissenschaften Soziologie Allgemeines / Lexika
ISBN-10 1-4522-8888-7 / 1452288887
ISBN-13 978-1-4522-8888-8 / 9781452288888
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Das Handbuch für Webentwickler

von Philip Ackermann

Buch | Hardcover (2023)
Rheinwerk (Verlag)
CHF 69,85
Grundlagen und praktische Anwendungen von Transpondern, kontaktlosen …

von Klaus Finkenzeller

Buch (2023)
Hanser (Verlag)
CHF 125,95
das umfassende Handbuch

von Marc Marburger

Buch | Hardcover (2024)
Rheinwerk (Verlag)
CHF 69,85