Compact Connected Lie Transformation Groups on Spheres with Low Cohomogeneity, Part 2
Seiten
1997
American Mathematical Society (Verlag)
978-0-8218-0483-4 (ISBN)
American Mathematical Society (Verlag)
978-0-8218-0483-4 (ISBN)
- Titel ist leider vergriffen;
keine Neuauflage - Artikel merken
Carries out a systematic investigation and construction of all possible differentiable (homotopy) G-spheres with 2-dimensional orbit space, where G is any compact connected Lie group. This title is based on the geometric weight system classification of Part I.
In this book, the author carries out a systematic investigation and construction of all possible differentiable (homotopy) G-spheres with 2-dimensional orbit space, where G is any compact connected Lie group. Based on the geometric weight system classification of Part I, the possible orbit structures are determined, and the exotic G-spheres are constructed by equivariant twisting of the orthogonal models.
In this book, the author carries out a systematic investigation and construction of all possible differentiable (homotopy) G-spheres with 2-dimensional orbit space, where G is any compact connected Lie group. Based on the geometric weight system classification of Part I, the possible orbit structures are determined, and the exotic G-spheres are constructed by equivariant twisting of the orthogonal models.
Organization of orthogonal models and orbit structures Orbit structures for G-spheres of cohomogeneity two The reconstruction problem G-spheres of cohomogeneity two with at most two isolated orbits G-spheres of cohomogeneity two with three isolated orbits Figures References.
Erscheint lt. Verlag | 1.7.1997 |
---|---|
Reihe/Serie | Memoirs of the American Mathematical Society |
Verlagsort | Providence |
Sprache | englisch |
Gewicht | 170 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
ISBN-10 | 0-8218-0483-9 / 0821804839 |
ISBN-13 | 978-0-8218-0483-4 / 9780821804834 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich