Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Metastability (eBook)

A Potential-Theoretic Approach
eBook Download: PDF
2016 | 1st ed. 2015
XXI, 581 Seiten
Springer International Publishing (Verlag)
978-3-319-24777-9 (ISBN)

Lese- und Medienproben

Metastability - Anton Bovier, Frank Den Hollander
Systemvoraussetzungen
139,09 inkl. MwSt
(CHF 135,85)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This monograph provides a concise presentation of a mathematical approach to metastability, a wide-spread phenomenon in the dynamics of non-linear systems - physical, chemical, biological or economic - subject to the action of temporal random forces typically referred to as noise, based on potential theory of reversible Markov processes. 

The authors shed new light on the metastability phenomenon as a sequence of visits of the path of the process to different metastable sets, and focuses on the precise analysis of the respective hitting probabilities and hitting times of these sets.

The theory is illustrated with many examples, ranging from finite-state Markov chains, finite-dimensional diffusions and stochastic partial differential equations, via mean-field dynamics with and without disorder, to stochastic spin-flip and particle-hop dynamics and probabilistic cellular automata, unveiling the common universal features of these systems with respect to their metastable behaviour.

The monograph will serve both as comprehensive introduction and as reference for graduate students and researchers interested in metastability.



Anton Bovier is Professor of Mathematics at the University of Bonn.  His research concerns applications of probability theory in physics and biology, with a focus on statistical mechanics, metastability and ageing. He has published over 130 scientific papers, and a monograph on 'Statistical Mechanics of Disordered Systems'. He is a Fellow of the Institute for Mathematical Statistics. He is member of the Clusters of Excellence 'Hausdorff Centre for Mathematics' and 'ImmunoSensation', both at the University of Bonn.

Frank den Hollander is Professor of Mathematics at Leiden University. His research focuses on probability theory, statistical physics, population dynamics and complex networks. He has published over 150 scientific papers, and two monographs on 'Large Deviations' and 'Random Polymers'. He is a member of the Royal Dutch Academy of Sciences, and a Fellow of the American Mathematical Society and of the Institute of Mathematical Statistics. He is recipient of a 5-year Advanced Grant by the European Research Council and a 10-year consortium grant by the Dutch Ministry of Education, Culture and Science.

Anton Bovier is Professor of Mathematics at the University of Bonn.  His research concerns applications of probability theory in physics and biology, with a focus on statistical mechanics, metastability and ageing. He has published over 130 scientific papers, and a monograph on “Statistical Mechanics of Disordered Systems”. He is a Fellow of the Institute for Mathematical Statistics. He is member of the Clusters of Excellence “Hausdorff Centre for Mathematics” and “ImmunoSensation”, both at the University of Bonn. Frank den Hollander is Professor of Mathematics at Leiden University. His research focuses on probability theory, statistical physics, population dynamics and complex networks. He has published over 150 scientific papers, and two monographs on “Large Deviations” and “Random Polymers”. He is a member of the Royal Dutch Academy of Sciences, and a Fellow of the American Mathematical Society and of the Institute of Mathematical Statistics. He is recipient of a 5-year Advanced Grant by the European Research Council and a 10-year consortium grant by the Dutch Ministry of Education, Culture and Science.

Part I Introduction.- 1.Background and motivation.- 2.Aims and scopes.- Part II Markov processes 3.Some basic notions from probability theory.- 4.Markov processes in discrete time.- 5.Markov processes in continuous time.- 6.Large deviations.- 7.Potential theory.- Part III Metastability.- 8.Key definitions and basic properties.- 9.Basic techniques.- Part IV Applications: Diffusions with small noise.- 10.Discrete reversible diffusions.- 11.Diffusion processes with gradient drift.- 12.Stochastic partial differential equations.- Part V Applications: Coarse-graining at positive temperatures.- 13.The Curie-Weiss model.- 14.The Curie-Weiss model with a random magnetic field: discrete distributions.- 15.The Curie-Weiss model with random magnetic field: continuous distributions.- Part VI Applications: Lattice systems in small volumes at low temperatures.- 16.Abstract set-up and metastability in the zero-temperature limit.- 17.Glauber dynamics.- 18.Kawasaki dynamics.- Part VII Applications: Lattice systems in large volumes at low temperatures.- 19.Glauber dynamics.- 20.Kawasaki dynamics.- Part VIII Applications: Lattice systems in small volumes at high densities.- 21.The zero-range process.- Part IX Challenges.- 22.Challenges within metastability.- 23.Challenges beyond metastability.- References.-Glossary.- Index.  

Erscheint lt. Verlag 11.2.2016
Reihe/Serie Grundlehren der mathematischen Wissenschaften
Grundlehren der mathematischen Wissenschaften
Zusatzinfo XXI, 581 p. 96 illus., 14 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik
Schlagworte 60K35, 60J45, 82C26 • Interacting Particle Systems • Markov Processes • metastability • phase transitions • Potential Theory
ISBN-10 3-319-24777-8 / 3319247778
ISBN-13 978-3-319-24777-9 / 9783319247779
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich