Nicht aus der Schweiz? Besuchen Sie lehmanns.de
A First Course in Harmonic Analysis - Anton Deitmar

A First Course in Harmonic Analysis

(Autor)

Buch | Hardcover
162 Seiten
2002
Springer-Verlag New York Inc.
978-0-387-95375-5 (ISBN)
CHF 67,30 inkl. MwSt
  • Titel erscheint in neuer Auflage
  • Artikel merken
This book is aimed at advanced undergraduates and it is intended as a primer in Harmonic Analysis. It is written without too much technical overload, opting to base the subject on the Riemann integral rather than the more demanding Lebesgue integral.
This book is a primer in harmonic analysis on the undergraduate level. It gives a lean and streamlined introduction to the central concepts of this beautiful and utile theory. In contrast to other books on the topic, A First Course in Harmonic Analysis is entirely based on the Riemann integral and metric spaces instead of the more demanding Lebesgue integral and abstract topology. Nevertheless, almost all proofs are given in full and all central concepts are presented clearly.The first aim of this book is to provide an introduction to Fourier analysis, leading up to the Poisson Summation Formula. The second aim is to make the reader aware of the fact that both principal incarnations of Fourier theory, the Fourier series and the Fourier transform, are special cases of a more general theory arising in the context of locally compact abelian groups. The third goal of this book is to introduce the reader to the techniques used in harmonic analysis of noncommutative groups. These techniques are explained in the context of matrix groups as a principal example.

Fourier Series * Hilbert Spaces * The Fourier Transform * Finite Abelian Groups * LCA-groups * The Dual Group * The Plancheral Theorem * Matrix Groups * The Representations of SU(2) * The Peter-Weyl Theorem * The Riemann zeta function * Haar integration.

Reihe/Serie Universitext
Verlagsort New York, NY
Sprache englisch
Einbandart gebunden
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Geometrie / Topologie
ISBN-10 0-387-95375-2 / 0387953752
ISBN-13 978-0-387-95375-5 / 9780387953755
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich