Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Für diesen Artikel ist leider kein Bild verfügbar.

Calculus

(Autor)

Buch | Softcover
2008 | 3rd Revised edition
Cambridge University Press (Verlag)
978-0-521-68385-2 (ISBN)
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
Spivak's celebrated Calculus combines leisurely explanations, a profusion of examples, a wide range of exercises and plenty of illustrations in an easy-going approach that enlightens difficult concepts and rewards effort. Ideal for honours students and mathematics majors seeking an alternative to doorstop textbooks and more formidable introductions to real analysis.
Spivak's celebrated textbook is widely held as one of the finest introductions to mathematical analysis. His aim is to present calculus as the first real encounter with mathematics: it is the place to learn how logical reasoning combined with fundamental concepts can be developed into a rigorous mathematical theory rather than a bunch of tools and techniques learned by rote. Since analysis is a subject students traditionally find difficult to grasp, Spivak provides leisurely explanations, a profusion of examples, a wide range of exercises and plenty of illustrations in an easy-going approach that enlightens difficult concepts and rewards effort. Calculus will continue to be regarded as a modern classic, ideal for honours students and mathematics majors, who seek an alternative to doorstop textbooks on calculus, and the more formidable introductions to real analysis.

Preface; Part I. Prologue: 1. Basic properties of mumbers; 2. Numbers of various sorts; Part II. Foundations: 3. Functions; 4. Graphs; 5. Limits; 6. Continuous functions; 7. Three hard theorems; 8. Least upper bounds; Part III. Derivatives and Integrals: 9. Derivatives; 10. Differentiation; 11. Significance of the derivative; 12. Inverse functions; 13. Integrals; 14. The fundamental theorem of calculus; 15. The trigonometric functions; 16. Pi is irrational; 17. Planetary motion; 18. The logarithm and exponential functions; 19. Integration in elementary terms; Part IV. Infinite Sequences and Infinite Series: 20. Approximation by polynomial functions; 21. e is transcendental; 22. Infinite sequences; 23. Infinite series; 24. Uniform convergence and power series; 25. Complex numbers; 26. Complex functions; 27. Complex power series; Part V. Epilogue: 28. Fields; 29. Construction of the real numbers; 30. Uniqueness of the real numbers; Suggested reading; Answers (to selected problems); Glossary of symbols; Index.

Erscheint lt. Verlag 1.5.2008
Zusatzinfo 700 Line drawings, unspecified
Verlagsort Cambridge
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Geometrie / Topologie
ISBN-10 0-521-68385-8 / 0521683858
ISBN-13 978-0-521-68385-2 / 9780521683852
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich