Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Classical Groups and Geometric Algebra

Classical Groups and Geometric Algebra

Buch | Hardcover
2001
American Mathematical Society (Verlag)
978-0-8218-2019-3 (ISBN)
CHF 143,15 inkl. MwSt
Intended for graduate students who have completed standard courses in linear algebra and abstract algebra, this title provides a single source for the basic facts about the classical groups and also includes the required geometrical background information from the first principles.
'Classical groups', named so by Hermann Weyl, are groups of matrices or quotients of matrix groups by small normal subgroups. Thus the story begins, as Weyl suggested, with 'Her All-embracing Majesty', the general linear group $GL_n(V)$ of all invertible linear transformations of a vector space $V$ over a field $F$. All further groups discussed are either subgroups of $GL_n(V)$ or closely related quotient groups. Most of the classical groups consist of invertible linear transformations that respect a bilinear form having some geometric significance, e.g., a quadratic form, a symplectic form, etc. Accordingly, the author develops the required geometric notions, albeit from an algebraic point of view, as the end results should apply to vector spaces over more-or-less arbitrary fields, finite or infinite. The classical groups have proved to be important in a wide variety of venues, ranging from physics to geometry and far beyond.In recent years, they have played a prominent role in the classification of the finite simple groups. This text provides a single source for the basic facts about the classical groups and also includes the required geometrical background information from the first principles. It is intended for graduate students who have completed standard courses in linear algebra and abstract algebra. The author, L. C. Grove, is a well-known expert who has published extensively in the subject area.

Permutation actions The basic linear groups Bilinear forms Symplectic groups Symmetric forms and quadratic forms Orthogonal geometry (char $F/not= 2$) Orthogonal groups (char $F /not= 2$), I $O(V)$, $V$ Euclidean Clifford algebras (char $F /not = 2$) Orthogonal groups (char $F /not = 2$), II Hermitian forms and unitary spaces Unitary groups Orthogonal geometry (char $F = 2$) Clifford algebras (char $F = 2$) Orthogonal groups (char $F = 2$) Further developments Bibliography List of notation Index.

Erscheint lt. Verlag 1.2.2003
Reihe/Serie Graduate Studies in Mathematics
Zusatzinfo bibliography, list, index
Verlagsort Providence
Sprache englisch
Gewicht 548 g
Themenwelt Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
Mathematik / Informatik Mathematik Geometrie / Topologie
ISBN-10 0-8218-2019-2 / 0821820192
ISBN-13 978-0-8218-2019-3 / 9780821820193
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Sieben ausgewählte Themenstellungen

von Hartmut Menzer; Ingo Althöfer

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 89,95
unlock your imagination with the narrative of numbers

von Dave Kester; Mikaela Ashcroft

Buch | Softcover (2024)
Advantage Media Group (Verlag)
CHF 27,90
Seltsame Mathematik - Enigmatische Zahlen - Zahlenzauber

von Klaus Scharff

Buch | Softcover (2024)
BoD – Books on Demand (Verlag)
CHF 27,95