Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Information Geometry and Its Applications - Shun-ichi Amari

Information Geometry and Its Applications

(Autor)

Buch | Hardcover
374 Seiten
2016 | 1st ed. 2016
Springer Verlag, Japan
978-4-431-55977-1 (ISBN)
CHF 209,70 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This is the first comprehensive book on information geometry, written by the founder of the field. An intuitive explanation of modern differential geometry then follows in Part II, although the book is for the most part understandable without modern differential geometry.
This is the first comprehensive book on information geometry, written by the founder of the field. It begins with an elementary introduction to dualistic geometry and proceeds to a wide range of applications, covering information science, engineering, and neuroscience. It consists of four parts, which on the whole can be read independently. A manifold with a divergence function is first introduced, leading directly to dualistic structure, the heart of information geometry. This part (Part I) can be apprehended without any knowledge of differential geometry. An intuitive explanation of modern differential geometry then follows in Part II, although the book is for the most part understandable without modern differential geometry. Information geometry of statistical inference, including time series analysis and semiparametric estimation (the Neyman–Scott problem), is demonstrated concisely in Part III. Applications addressed in Part IV include hot current topics in machine learning,signal processing, optimization, and neural networks. The book is interdisciplinary, connecting mathematics, information sciences, physics, and neurosciences, inviting readers to a new world of information and geometry. This book is highly recommended to graduate students and researchers who seek new mathematical methods and tools useful in their own fields.

1 Manifold, Divergence and Dually Flat Structure.- 2 Exponential Families and Mixture Families of Probability.- 3 Invariant Geometry of Manifold of Probability.- 4 α-Geometry, Tsallis q-Entropy and Positive-Definite.- 5 Elements of Differential Geometry.- 6 Dual Affine Connections and Dually Flat Manifold.- 7 Asymptotic Theory of Statistical Inference.- 8 Estimation in the Presence of Hidden Variables.- 9 Neyman–Scott Problem.- 10 Linear Systems and Time Series.- 11 Machine Learning.- 12 Natural Gradient Learning and its Dynamics in Singular.- 13 Signal Processing and Optimization.- Index.

Erscheinungsdatum
Reihe/Serie Applied Mathematical Sciences ; 194
Zusatzinfo 98 Illustrations, black and white; XIII, 374 p. 98 illus.
Verlagsort Tokyo
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Geometrie / Topologie
Schlagworte Dual differential geometry • information geometry • machine learning • mathematical neuroscience • Natural gradient learning • Signal Processing
ISBN-10 4-431-55977-9 / 4431559779
ISBN-13 978-4-431-55977-1 / 9784431559771
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Grundlagen – Anwendungen – Perspektiven

von Matthias Homeister

Buch | Softcover (2022)
Springer Vieweg (Verlag)
CHF 48,95
Eine Einführung in die Systemtheorie

von Margot Berghaus

Buch | Softcover (2022)
UTB (Verlag)
CHF 34,95
was jeder über Informatik wissen sollte

von Timm Eichstädt; Stefan Spieker

Buch | Softcover (2024)
Springer Vieweg (Verlag)
CHF 53,15