Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Verbesserung von Klassifikationsverfahren (eBook)

Informationsgehalt der k-Nächsten-Nachbarn nutzen

(Autor)

eBook Download: PDF
2015 | 1. Aufl. 2016
XXII, 224 Seiten
Springer Fachmedien Wiesbaden GmbH (Verlag)
978-3-658-11476-3 (ISBN)

Lese- und Medienproben

Verbesserung von Klassifikationsverfahren - Dominik Koch
Systemvoraussetzungen
46,99 inkl. MwSt
(CHF 45,90)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Dominik Koch weist in seinen Studien nach, dass es mit Hilfe der k-Nächsten-Nachbarn möglich ist, die Ergebnisse anderer Klassifikationsverfahren so zu verbessern, dass sie wieder eine Konkurrenz zu dem meist dominierenden Random Forest darstellen. Das von Fix und Hodges entwickelte k-Nächste-Nachbarn-Verfahren ist eines der simpelsten und zugleich intuitivsten Klassifikationsverfahren. Nichtsdestotrotz ist es in den meisten Fällen in der Lage, ziemlich gute Klassifikationsergebnisse zu liefern. Diesen Informationsgehalt der k-Nächsten-Nachbarn kann man sich zu Nutze machen, um bereits etablierte Verfahren zu verbessern. In diesem Buch werden die Auswirkungen der k-Nächsten-Nachbarn auf den Boosting-Ansatz, Lasso und Random Forest in Bezug auf binäre Klassifikationsprobleme behandelt.



Dominik Koch absolvierte das Statistik-Studium der Ludwig-Maximilians-Universität in München als Jahrgangsbester. Seit 2013 ist er als statistischer Berater (Schwerpunkt: Automobilindustrie und Bankenbranche) tätig. Im Rahmen seiner Publikationstätigkeit arbeitet er auch weiterhin eng mit dem statistischen Institut der Ludwig-Maximilians-Universität zusammen.

 

Dominik Koch absolvierte das Statistik-Studium der Ludwig-Maximilians-Universität in München als Jahrgangsbester. Seit 2013 ist er als statistischer Berater (Schwerpunkt: Automobilindustrie und Bankenbranche) tätig. Im Rahmen seiner Publikationstätigkeit arbeitet er auch weiterhin eng mit dem statistischen Institut der Ludwig-Maximilians-Universität zusammen.  

Grundlagen der k-Nächsten-Nachbarn.- Vorstellung der zu erweiternden Klassifikationsverfahren.- Benchmarking anhand von simulierten Daten.- Anwendung der modifizierten Verfahren auf reale Datensätze.

Erscheint lt. Verlag 26.11.2015
Reihe/Serie BestMasters
BestMasters
Zusatzinfo XXII, 224 S. 278 Abb.
Verlagsort Wiesbaden
Sprache deutsch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik
Schlagworte Boosting • k-Nächste-Nachbarn • Lasso • Nächste Nachbarn • random forest
ISBN-10 3-658-11476-2 / 3658114762
ISBN-13 978-3-658-11476-3 / 9783658114763
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 1,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich