Dependent Data in Social Sciences Research (eBook)
XIII, 385 Seiten
Springer International Publishing (Verlag)
978-3-319-20585-4 (ISBN)
This volume presents contributions on handling data in which the postulate of independence in the data matrix is violated. When this postulate is violated and when the methods assuming independence are still applied, the estimated parameters are likely to be biased, and statistical decisions are very likely to be incorrect. Problems associated with dependence in data have been known for a long time, and led to the development of tailored methods for the analysis of dependent data in various areas of statistical analysis. These methods include, for example, methods for the analysis of longitudinal data, corrections for dependency, and corrections for degrees of freedom. This volume contains the following five sections: growth curve modeling, directional dependence, dyadic data modeling, item response modeling (IRT), and other methods for the analysis of dependent data (e.g., approaches for modeling cross-section dependence, multidimensional scaling techniques, and mixed models). Researchers and graduate students in the social and behavioral sciences, education, econometrics, and medicine will find this up-to-date overview of modern statistical approaches for dealing with problems related to dependent data particularly useful.
Growth Curve Modeling.- Directional Dependence.- Dydatic Data Modeling.- Item Response Modeling.- Other Methods for the Analyses of Dependent Data.
Erscheint lt. Verlag | 19.10.2015 |
---|---|
Reihe/Serie | Springer Proceedings in Mathematics & Statistics | Springer Proceedings in Mathematics & Statistics |
Zusatzinfo | XIII, 385 p. |
Verlagsort | Cham |
Sprache | englisch |
Themenwelt | Geisteswissenschaften ► Psychologie ► Test in der Psychologie |
Mathematik / Informatik ► Mathematik ► Statistik | |
Sozialwissenschaften ► Soziologie ► Empirische Sozialforschung | |
Technik | |
Schlagworte | Analysis of longitudinal panel count data • close proximity data • clustered or paired data • corrections for dependency • dependent data • directional dependence • dyadic data modeling • growth curve modeling • item response modeling • Psychometrics • statistical analysis for dependence in data |
ISBN-10 | 3-319-20585-4 / 3319205854 |
ISBN-13 | 978-3-319-20585-4 / 9783319205854 |
Haben Sie eine Frage zum Produkt? |
Größe: 6,8 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich