Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Heat Exchanger Design Guide -  Raji Olayiwola Gbadamosi,  Manfred Nitsche

Heat Exchanger Design Guide (eBook)

A Practical Guide for Planning, Selecting and Designing of Shell and Tube Exchangers
eBook Download: PDF | EPUB
2015 | 1. Auflage
280 Seiten
Elsevier Science (Verlag)
978-0-12-803822-2 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
89,95 inkl. MwSt
(CHF 87,85)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Heat Exchanger Design Guide: A Practical Guide for Planning, Selecting and Designing of Shell and Tube Exchangers takes users on a step-by-step guide to the design of heat exchangers in daily practice, showing how to determine the effective driving temperature difference for heat transfer. Users will learn how to calculate heat transfer coefficients for convective heat transfer, condensing, and evaporating using simple equations. Dew and bubble points and lines are covered, with all calculations supported with examples. This practical guide is designed to help engineers solve typical problems they might encounter in their day-to-day work, and will also serve as a useful reference for students learning about the field. The book is extensively illustrated with figures in support of the text and includes calculation examples to ensure users are fully equipped to select, design, and operate heat exchangers. - Covers design method and practical correlations needed to design practical heat exchangers for process application - Includes geometrical calculations for the tube and shell side, also covering boiling and condensation heat transfer - Explores heat transfer coefficients and temperature differences - Designed to help engineers solve typical problems they might encounter in their day-to-day work, but also ideal as a useful reference for students learning about the field

Dr. Manfred Nitsche has more than 40 years' experience as a chemical engineer. During his career he has designed and built several chemical plants and has been giving engineering training courses for young engineers since 1980. He has written a number of books on piping design, heat exchanger design, heating and cooling systems in plants, column design and waste air cleaning (all in German).Dr. Nitsche's extensive experience includes designing and building distillation units, tank farms, stirred tank reactor facilities, air purification units and absorption and stripping units for various applications.
Heat Exchanger Design Guide: A Practical Guide for Planning, Selecting and Designing of Shell and Tube Exchangers takes users on a step-by-step guide to the design of heat exchangers in daily practice, showing how to determine the effective driving temperature difference for heat transfer. Users will learn how to calculate heat transfer coefficients for convective heat transfer, condensing, and evaporating using simple equations. Dew and bubble points and lines are covered, with all calculations supported with examples. This practical guide is designed to help engineers solve typical problems they might encounter in their day-to-day work, and will also serve as a useful reference for students learning about the field. The book is extensively illustrated with figures in support of the text and includes calculation examples to ensure users are fully equipped to select, design, and operate heat exchangers. - Covers design method and practical correlations needed to design practical heat exchangers for process application- Includes geometrical calculations for the tube and shell side, also covering boiling and condensation heat transfer- Explores heat transfer coefficients and temperature differences- Designed to help engineers solve typical problems they might encounter in their day-to-day work, but also ideal as a useful reference for students learning about the field

Chapter 2

Calculations of the Temperature Differences LMTD and CMTD


Abstract


First the logarithmic mean temperature difference (LMTD) for equipments with ideal countercurrent stream is derived. In multipass heat exchangers with nonideal countercurrent stream, the LMTD must be converted to the corrected effective mean temperature difference (CMTD) with the temperature efficiency factor F. It is shown how the temperature efficiency factor F can be graphically determined or how the CMTD can be calculated. Also, the effect of the bypass streams on the temperature difference LMTD and the determination of the mean weighted temperature difference for curved condensation curves are explained. Finally, the heat exchanger outlet temperature for a given heat exchanger is determined.

Keywords


Bypass stream; Corrected effective mean temperature difference (CMTD); Logarithmic mean temperature difference (LMTD); Mean weighted temperature difference (WMTD); Outlet temperatures; Temperature efficiency factor (F)

Contents

2.1. Logarithmic Mean Temperature Difference for Ideal Countercurrent Flow


The logarithmic mean temperature difference (LMTD) for ideal countercurrent flow is determined from the two temperature differences Δt1 and Δt2.

=Δt1−Δt2lnΔt1Δt2Δt1=T1−t2Δt2=T2−t1

T1 = shell-side inlet temperature (°C)
T2 = shell-side outlet temperature (°C)
t1 = tube-side inlet temperature (°C)
t2 = tube-side outlet temperature (°C)
Example 1: Calculation of the logarithmic mean temperature difference

Figure 2.1 Heat exchanger TEMA—type E with two tube passes.

2.2. Corrected Temperature Difference for Multipass Heat Exchanger


In Chapter 1, it was already pointed out that with a multipass heat exchanger, there is no ideal countercurrent but a mixture of co- and countercurrent flow.
This makes the effective temperature gradient worse.
In Figures 2.2 and 2.3, temperature efficiency diagrams are shown, it is clear that the driving temperature difference in the one-pass equipment with ideal countercurrent is better than in the two-pass heat exchanger.
Procedure for the determination of the corrected effective mean temperature difference (CMTD) for heat exchangers with nonideal countercurrent flow:
First, the LMTD is calculated from the inlet and outlet temperatures on the tube and shell side.
With nonideal countercurrent, the LMTD must be corrected with a temperature efficiency factor F.

=F×LMTD

F = temperature efficiency factor
LMTD = logarithmic mean temperature difference (°C) for countercurrent flow
CMTD = corrected effective mean temperature difference (°C) for multipass heat exchangers

Figure 2.2 Temperature profile as function of the heat load in a one-pass heat exchanger with ideal countercurrent flow.
The temperature efficiency factor F can be calculated for a heat exchanger shell type E according to TEMA using the following equation:

=(R2+1R−1)ln[(1−Pz)/(1−RPz)]ln[(2/Pz)−1−R+R2+1(2/Pz)−1−R−R2+1]Pz=1−(RP−1P−1)1/NR−(RP−1P−1)1/N


Figure 2.3 Temperature profile as function of the heat load in a two-pass heat exchanger with co- and countercurrent flow.

=t2−t1T1−t1R=T1−T2t2−t1

N = number of heat exchangers in series
The following table shows how large the temperature approach or a temperature cross deteriorates the CMTD, and that one can improve the temperature efficiency factor with multiple heat exchangers in series.
58 42 15 35.1 1 24.9 0.906 22.6
58 42 20 40.1 1 19.9 0.844 16.8
58 42 25 45.1 1 14.9 0.670 10
Table Continued
58 42 25 45.1 2 14.9 0.936 13.9
58 42 30 50.1 2 9.8 0.840 8.2
58 42 35 55.1 4 4.7 0.818 3.8
58 42 37 57.1 6 2.4 0.631 1.5
58 42 37 57.1 7 2.4 0.764 1.8
Corollary:
1. With large approach of temperatures at the tube and shell side, the temperature efficiency factor F and hence the CMTD deteriorates.
2. Through the arrangement of multiple heat exchangers one after the other, one can improve the temperature efficiency factor F because with this arrangement one approaches the countercurrent flow.
3. A large temperature cross is only possible with multiple equipments in series.
The temperature efficiency factor F can also be determined graphically using the diagrams in Figure 2.4 with the calculation variables P and R.
Alternatively, the CMTD in multipass heat exchangers can be determined with the calculation variables O and M.

=MlnO+MO−M(°C)O=(T1−t2)+(T2−t1)M=(T1−T2)2+(t2−t1)2

Example 2: Calculation of LMTD and CMTD for the heat exchangers in Figures 2.2 and 2.3
Shell inlet temperature T1 = 80 °C
Shell outlet temperature T2 = 50 °C
Tube inlet temperature t1 = 20 °C
Tube outlet temperature...

PDFPDF (Adobe DRM)
Größe: 15,4 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 22,4 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Discover tactics to decrease churn and expand revenue

von Jeff Mar; Peter Armaly

eBook Download (2024)
Packt Publishing (Verlag)
CHF 24,60