Period Functions for Maass Wave Forms and Cohomology
Seiten
2015
American Mathematical Society (Verlag)
978-1-4704-1407-8 (ISBN)
American Mathematical Society (Verlag)
978-1-4704-1407-8 (ISBN)
- Keine Verlagsinformationen verfügbar
- Artikel merken
The authors construct explicit isomorphisms between spaces of Maass wave forms and cohomology groups for discrete cofinite groups $/Gamma/subset/mathrm{PSL}_2({/mathbb{R}})$. In the case that $/Gamma$ is the modular group $/mathrm{PSL}_2({/mathbb{Z}})$ this gives a cohomological framework for the results in Period functions for Maass wave forms.
The authors construct explicit isomorphisms between spaces of Maass wave forms and cohomology groups for discrete cofinite groups $/Gamma/subset/mathrm{PSL}_2({/mathbb{R}})$.
In the case that $/Gamma$ is the modular group $/mathrm{PSL}_2({/mathbb{Z}})$ this gives a cohomological framework for the results in Period functions for Maass wave forms. I, of J. Lewis and D. Zagier in Ann. Math. 153 (2001), 191-258, where a bijection was given between cuspidal Maass forms and period functions.
The authors introduce the concepts of mixed parabolic cohomology group and semi-analytic vectors in principal series representation. This enables them to describe cohomology groups isomorphic to spaces of Maass cusp forms, spaces spanned by residues of Eisenstein series, and spaces of all $/Gamma$-invariant eigenfunctions of the Laplace operator.
For spaces of Maass cusp forms the authors also describe isomorphisms to parabolic cohomology groups with smooth coefficients and standard cohomology groups with distribution coefficients. They use the latter correspondence to relate the Petersson scalar product to the cup product in cohomology.
The authors construct explicit isomorphisms between spaces of Maass wave forms and cohomology groups for discrete cofinite groups $/Gamma/subset/mathrm{PSL}_2({/mathbb{R}})$.
In the case that $/Gamma$ is the modular group $/mathrm{PSL}_2({/mathbb{Z}})$ this gives a cohomological framework for the results in Period functions for Maass wave forms. I, of J. Lewis and D. Zagier in Ann. Math. 153 (2001), 191-258, where a bijection was given between cuspidal Maass forms and period functions.
The authors introduce the concepts of mixed parabolic cohomology group and semi-analytic vectors in principal series representation. This enables them to describe cohomology groups isomorphic to spaces of Maass cusp forms, spaces spanned by residues of Eisenstein series, and spaces of all $/Gamma$-invariant eigenfunctions of the Laplace operator.
For spaces of Maass cusp forms the authors also describe isomorphisms to parabolic cohomology groups with smooth coefficients and standard cohomology groups with distribution coefficients. They use the latter correspondence to relate the Petersson scalar product to the cup product in cohomology.
R. Bruggeman, Mathematisch Instituut, Universiteit Utrecht, The Netherlands. J. Lewis, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. D. Zagier, MPI for Mathematics, Bonn, Germany, and College de France, Paris, France.
Eigenfunctions of the hyperbolic Laplace operator
Maass forms and analytic cohomology: cocompact groups
Cohomology of infinite cyclic subgroups of PSL2(R)
Maass forms and semi-analytic cohomology: groups with cusps
Maass forms and differentiable cohomology
Distribution cohomology and Petersson produc
Bibliography
Index
List of notations
Reihe/Serie | Memoirs of the American Mathematical Society |
---|---|
Verlagsort | Providence |
Sprache | englisch |
Maße | 178 x 254 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie |
ISBN-10 | 1-4704-1407-4 / 1470414074 |
ISBN-13 | 978-1-4704-1407-8 / 9781470414078 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Sieben ausgewählte Themenstellungen
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 89,95
unlock your imagination with the narrative of numbers
Buch | Softcover (2024)
Advantage Media Group (Verlag)
CHF 27,90