Complex Analysis (eBook)
John Wiley & Sons (Verlag)
978-1-118-70527-8 (ISBN)
Jerry R. Muir, Jr., PhD, is Professor of Mathematics at The University of Scranton. He has authored over one dozen research articles in complex-flavored analysis, primarily on geometric function theory in several complex variables.
Preface ix
1 The Complex Numbers 1
1.1 Why? 1
1.2 The Algebra of Complex Numbers 3
1.3 The Geometry of the Complex Plane 7
1.4 The Topology of the Complex Plane 9
1.5 The Extended Complex Plane 16
1.6 Complex Sequences 18
1.7 Complex Series 24
2 Complex Functions and Mappings 29
2.1 Continuous Functions 29
2.2 Uniform Convergence 34
2.3 Power Series 38
2.4 Elementary Functions and Euler's Formula 43
2.5 Continuous Functions as Mappings 50
2.6 Linear Fractional Transformations 53
2.7 Derivatives 64
2.8 The Calculus of Real Variable Functions 70
2.9 Contour Integrals 75
3 Analytic Functions 87
3.1 The Principle of Analyticity 87
3.2 Differentiable Functions are Analytic 89
3.3 Consequences of Goursat's Theorem 100
3.4 The Zeros of Analytic Functions 104
3.5 The Open Mapping Theorem and Maximum Principle 108
3.6 The Cauchy-Riemann Equations 113
3.7 Conformal Mapping and Local Univalence 117
4 Cauchy's Integral Theory 127
4.1 The Index of a Closed Contour 127
4.2 The Cauchy Integral Formula 133
4.3 Cauchy's Theorem 139
5 The Residue Theorem 145
5.1 Laurent Series 145
5.2 Classification of Singularities 152
5.3 Residues 158
5.4 Evaluation of Real Integrals 165
5.5 The Laplace Transform 174
6 Harmonic Functions and Fourier Series 183
6.1 Harmonic Functions 183
6.2 The Poisson Integral Formula 191
6.3 Further Connections to Analytic Functions 201
6.4 Fourier Series 210
Epilogue 227
A Sets and Functions 239
B Topics from Advanced Calculus 247
References 255
Index 257
"The textbook is appropriate for students and can serve as a key reference for anyone interested in learning or reviewing the theory of complex functions of a complex variable." (Zentralblatt MATH, 2016)
Erscheint lt. Verlag | 26.5.2015 |
---|---|
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Technik | |
Schlagworte | Analysis • Analytic Functions • Cauchy’s Integral Formula • Cauchy's theorem • Complex & Functional Analysis • Complex Analysis • complex numbers • conformal mapping • Fourier series • Funktionentheorie • Harmonic Functions • Komplexe Analysis u. Funktionalanalysis • Komplexe Funktion • Linear Fractional Transformations • <p>Mathematics • Mathematical Analysis • Mathematics • Mathematik • Mathematische Analyse • Nichtlineare u. komplexe Systeme • Nonlinear and Complex Systems • Physics • Physik • Residue Theorem • Riemann mapping theorem</p> |
ISBN-10 | 1-118-70527-0 / 1118705270 |
ISBN-13 | 978-1-118-70527-8 / 9781118705278 |
Haben Sie eine Frage zum Produkt? |
Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopierschutz. Eine Weitergabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persönlichen Nutzung erwerben.
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich