Compact Projective Planes (eBook)
701 Seiten
De Gruyter (Verlag)
978-3-11-087683-3 (ISBN)
The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics.
The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject.
Editorial Board
Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil
Walter D. Neumann, Columbia University, New York, USA
Markus J. Pflaum, University of Colorado, Boulder, USA
Dierk Schleicher, Jacobs University, Bremen, Germany
Katrin Wendland, University of Freiburg, Germany
Honorary Editor
Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia
Titles in planning include
Yuri A. Bahturin, Identical Relations in Lie Algebras (2019)
Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019)
Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019)
Volker Mayer, Mariusz Urbański, and Anna Zdunik, Random and Conformal Dynamical Systems (2021)
Ioannis Diamantis, Boštjan Gabrovšek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)
lt;P>"This is the book that everybody interested in topological (incidence) geometry has been waiting for. It is the most comprehensive account of all important results relating to compact projective planes and for years to come it will be the standard reference and a must read for everybody who wants to learn about or work in topological geometry. The material in the book originated from a multitude of sources scattered in the literature and has been completely reworked, streamlined and complemented to produce a self-contained whole. Although the book is of a specialist nature, the authors have made every effort to make it accessible and of interest to as broad a section of the mathematical community as possible." Mathematical Reviews
"The book provides a wealth of information and should prove an extremely useful text both as an introduction to compact, connected topological projective planes as well as a valuable and convenient reference and a sound foundation for future investigations. The book is a highly readable, self-contained monograph. It serves as an excellent advertisement for topological geometry and will attract many more mathematicians to this area. Various chapters may appeal to the interested broader mathematical community." Zentralblatt für Mathematik
Erscheint lt. Verlag | 24.6.2011 |
---|---|
Reihe/Serie | De Gruyter Expositions in Mathematics | ISSN |
Zusatzinfo | 31 b/w ill. |
Verlagsort | Berlin/Boston |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Allgemeines / Lexika |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Technik | |
Schlagworte | Projektive Ebene |
ISBN-10 | 3-11-087683-3 / 3110876833 |
ISBN-13 | 978-3-11-087683-3 / 9783110876833 |
Haben Sie eine Frage zum Produkt? |
Größe: 26,3 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich