Deformation Quantization for Actions of Kahlerian Lie Groups
Seiten
2015
American Mathematical Society (Verlag)
978-1-4704-1491-7 (ISBN)
American Mathematical Society (Verlag)
978-1-4704-1491-7 (ISBN)
- Keine Verlagsinformationen verfügbar
- Artikel merken
In this memoir, the authors prove both analogous statements for general negatively curved Kahlerian groups. The construction relies on combining a non-Abelian version of oscillatory integral on tempered Lie groups with geometrical objects coming from invariant WKB-quantization of solvable symplectic symmetric spaces, andin establishing a non-Abelian version of the Calderon-Vaillancourt Theorem.
Let $/mathbb{B}$ be a Lie group admitting a left-invariant negatively curved Kahlerian structure. Consider a strongly continuous action $/alpha$ of $/mathbb{B}$ on a Frechet algebra $/mathcal{A}$. Denote by $/mathcal{A}^/infty$ the associated Frechet algebra of smooth vectors for this action. In the Abelian case $/mathbb{B}=/mathbb{R}^{2n}$ and $/alpha$ isometric, Marc Rieffel proved that Weyl's operator symbol composition formula (the so called Moyal product) yields a deformation through Frechet algebra structures $/{/star_{/theta}^/alpha/}_{/theta/in/mathbb{R}}$ on $/mathcal{A}^/infty$. When $/mathcal{A}$ is a $C^*$-algebra, every deformed Frechet algebra $(/mathcal{A}^/infty,/star^/alpha_/theta)$ admits a compatible pre-$C^*$-structure, hence yielding a deformation theory at the level of $C^*$-algebras too.
In this memoir, the authors prove both analogous statements for general negatively curved Kahlerian groups. The construction relies on the one hand on combining a non-Abelian version of oscillatory integral on tempered Lie groups with geom,etrical objects coming from invariant WKB-quantization of solvable symplectic symmetric spaces, and, on the second hand, in establishing a non-Abelian version of the Calderon-Vaillancourt Theorem. In particular, the authors give an oscillating kernel formula for WKB-star products on symplectic symmetric spaces that fiber over an exponential Lie group.
Let $/mathbb{B}$ be a Lie group admitting a left-invariant negatively curved Kahlerian structure. Consider a strongly continuous action $/alpha$ of $/mathbb{B}$ on a Frechet algebra $/mathcal{A}$. Denote by $/mathcal{A}^/infty$ the associated Frechet algebra of smooth vectors for this action. In the Abelian case $/mathbb{B}=/mathbb{R}^{2n}$ and $/alpha$ isometric, Marc Rieffel proved that Weyl's operator symbol composition formula (the so called Moyal product) yields a deformation through Frechet algebra structures $/{/star_{/theta}^/alpha/}_{/theta/in/mathbb{R}}$ on $/mathcal{A}^/infty$. When $/mathcal{A}$ is a $C^*$-algebra, every deformed Frechet algebra $(/mathcal{A}^/infty,/star^/alpha_/theta)$ admits a compatible pre-$C^*$-structure, hence yielding a deformation theory at the level of $C^*$-algebras too.
In this memoir, the authors prove both analogous statements for general negatively curved Kahlerian groups. The construction relies on the one hand on combining a non-Abelian version of oscillatory integral on tempered Lie groups with geom,etrical objects coming from invariant WKB-quantization of solvable symplectic symmetric spaces, and, on the second hand, in establishing a non-Abelian version of the Calderon-Vaillancourt Theorem. In particular, the authors give an oscillating kernel formula for WKB-star products on symplectic symmetric spaces that fiber over an exponential Lie group.
Pierre Bieliavsky, Universite Catholique de Louvain, Louvain le Neuve, Belgium. Victor Gayral, Laboratoire de Mathematiques, Reims, France.
Introduction
Notations and conventions
Oscillatory integrals
Tempered pairs for Kahlerian Lie groups
Non-formal star-products
Deformation of Frechet algebras
Quantization of polarized symplectic symmetric spaces
Quantization of Kahlerian Lie groups
Deformation of $C^*$-algebras
Bibliography
Erscheint lt. Verlag | 30.7.2015 |
---|---|
Reihe/Serie | Memoirs of the American Mathematical Society |
Verlagsort | Providence |
Sprache | englisch |
Maße | 178 x 254 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
ISBN-10 | 1-4704-1491-0 / 1470414910 |
ISBN-13 | 978-1-4704-1491-7 / 9781470414917 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2022)
Springer Spektrum (Verlag)
CHF 55,95