This work encapsulates the uses of miRNA across stem cells, developmental biology, tissue injury and tissue regeneration. In particular contributors provide focused coverage of methodologies, intervention and tissue engineering. Regulating virtually all biological processes, the genome's 1048 encoded microRNAs appear to hold considerable promise for the potential repair and regeneration of tissues and organs in future therapies. In this work, 50 experts address key topics of this fast-emerging field. Concisely summarizing and evaluating key findings emerging from fundamental research into translational application, they point to the current and future significance of clinical research in the miRNA area. Coverage encompasses all major aspects of fundamental stem cell and developmental biology, including the uses of miRNA across repair and regeneration, and special coverage of methodologies and interventions as they point towards organ and tissue engineering- Multi-colour text layout with 150 colour figures to illustrate important findings- Take home messages encapsulate key lessons throughout text- Short chapters offer focused discussion and clear 'voice'
Front Cover 1
MicroRNA in
4
Copyright 5
Dedication 6
Contents 8
Contributors 38
Part 1 - Stem Cells 46
CHAPTER 1 MicroRNA Biogenesis in Regenerative Medicine 48
1.1 INTRODUCTION 50
1.2 MACRO IMPACT OF MIRNAS 53
1.3 MIRNA BIOGENESIS: DIFFERENT PATHS TO THE SAME DESTINATION 54
1.4 MECHANISMS OF MIRNA-INDUCED TRANSLATIONAL REPRESSION 60
1.5 MIRNA REGULATION 62
1.6 METHODS FOR MIRNA PROFILING 65
1.7 BIOINFORMATICS ANALYSIS OF MIRNAS 68
1.8 MIRNA APPLICATIONS IN REGENERATIVE MEDICINE 72
1.9 MIRNAS AND STEM CELLS 73
1.10 CONCLUSIONS AND FUTURE PERSPECTIVES 79
CHAPTER QUESTIONS 80
ACRONYMS AND ABBREVIATIONS 81
REFERENCES 81
FURTHER READING 91
Chapter 2 - Control of Pluripotency and Reprogramming 92
2.1 INTRODUCTION 95
2.2 BASIC PROPERTIES OF STEM CELLS 95
2.3 PLURIPOTENCY 96
2.4 NUCLEAR REPROGRAMMING 107
2.5 CONCLUSIONS 110
CHAPTER QUESTIONS 112
ACRONYMS AND ABBREVIATIONS 112
REFERENCES 112
FURTHER READING 120
Chapter 3 - Epigenetic Modification of MicroRNAs 122
3.1 INTRODUCTION 125
OF A HEALTHY CELL 125
3.3 MIRNAS AND EPIGENETIC REGULATION 133
3.4 A GENERALIZED MODEL FOR EPIGENETIC REGULATION OF MIRNAS IN DETERMINING CELL FATE 142
3.5 EPIGENETIC MODIFICATIONS AND REGENERATIVE MEDICINE 143
3.6 EPIGENETIC MODIFYING DRUGS 145
3.7 THE CLINICAL RELEVANCE OF MIRNAS AND EPIGENETIC MODIFYING DRUGS 145
3.8 CONCLUSIONS AND FUTURE PERSPECTIVES 146
CHAPTER QUESTIONS 147
ABBREVIATIONS 148
REFERENCES 148
FURTHER READING 154
Chapter 4 - miRNAs in Bone Marrow–Derived Mesenchymal Stem Cells 156
4.1 INTRODUCTION 156
4.2 MECHANISMS OF MSC CORRECTION 160
4.3 MIRNAS IN GENERAL AND IN WOUND HEALING 163
4.4 MSCS IN MIR-146A EXPRESSION: ATTENUATION OF INFLAMMATORY RESPONSE IN DIABETIC WOUNDS 168
4.5 CONCLUSIONS AND FUTURE PERSPECTIVES 174
Chapter Questions 175
REFERENCES 176
Chapter 5 - miRNAs in Cancer Stem Cells 182
5.1 INTRODUCTION 183
5.2 MIRNA REGULATION OF NORMAL STEM CELLS 187
5.3 MIRNA REGULATION OF CANCER STEM CELLS 191
5.4 REGULATION OF MIRNAS TO INHIBIT CANCER STEM CELLS 196
5.5 CONCLUSIONS AND FUTURE PERSPECTIVES 199
CHAPTER QUESTIONS 201
ACKNOWLEDGMENTS 201
REFERENCES 202
FURTHER READING 206
Chapter 6 - MicroRNAs in Neural Stem Cells 208
GLOSSARY 208
6.1 INTRODUCTION 209
6.2 FIRST INSIGHTS: DICER-KNOCKOUT MICE 210
6.3 MIRNA CONTROL OF NSC STATUS AND PROGRESSION ALONG DIFFERENTIATION 212
6.4 MIRNAS AS NEURONAL FATE DETERMINANTS 217
6.5 CONCLUSIONS AND FUTURE PERSPECTIVES 220
CHAPTER QUESTIONS 221
REFERENCES 222
ONLINE RESOURCES 226
FURTHER READING 227
Chapter 7 - MicroRNAs in Embryonic Stem Cells 228
GLOSSARY 229
7.1 INTRODUCTION 229
7.2 STEM CELLS AND PLURIPOTENCY 233
7.3 MIRNAS IN EMBRYONIC STEM CELLS 237
7.4 THE ROLE OF MIRNAS IN CELLULAR REPROGRAMMING 246
7.5 CONCLUSIONS AND FUTURE PERSPECTIVES 248
CHAPTER QUESTIONS 249
ACKNOWLEDGMENTS 250
REFERENCES 251
FURTHER READING 256
Seminal Articles 256
Reviews 257
Chapter 8 - MicroRNAs in Normal and Malignant Myelopoiesis 258
8.1 INTRODUCTION 259
8.2 MIRNAS IN HEMATOPOIETIC STEM CELLS AND LINEAGE-COMMITTED PROGENITOR CELLS 261
8.3 CRITICAL TRANSCRIPTION FACTORS CONTROL MIRNAS IN MYELOPOIESIS 263
8.4 MIRNA FUNCTIONS IN MATURE MYELOID CELLS 266
8.5 MIRNAS IN MALIGNANT MYELOPOIESIS 268
8.6 ABERRANT MIRNA BIOGENESIS IN AML 270
8.7 CONCLUSIONS AND FUTURE PERSPECTIVES 271
CHAPTER QUESTIONS 273
REFERENCES 274
ONLINE RESOURCES 281
FURTHER READING 281
Normal and Malignant Hematology 281
RNA and RNA Interfering 281
miRNAs in Myeloid Biology 281
Chapter 9 - MicroRNA-Mediated Translational Control in Stem Cells: Self-Renewal and Therapeutic Implications 282
GLOSSARY 283
9.1 INTRODUCTION 283
9.2 STEM CELLS 283
9.3 FACTORS ESSENTIAL FOR MAINTENANCE OF STEM CELL SELF-RENEWAL 287
9.4 MIRNA BIOGENESIS AND MODE OF ACTION 293
9.5 INDUCED PLURIPOTENT STEM CELLS AND MIRNAS 297
9.6 CONCLUSIONS AND FUTURE PERSPECTIVES 299
CHAPTER QUESTIONS 299
REFERENCES 300
ONLINE RESOURCES 304
Chapter 10 - MicroRNAs in Endothelial Progenitor Cells 306
GLOSSARY 307
10.1 INTRODUCTION 307
10.2 EPCS AND CARDIOVASCULAR DISEASES 308
10.3 EPCS AND ANGIOGENESIS-BASED TISSUE REPAIR 310
10.4 EPCS IN TUMOR ANGIOGENESIS 311
10.5 CONTROVERSY IN IDENTIFICATION OF EPCS 312
10.6 MIRNA PROFILES IN EPCS 313
10.7 REGULATION OF MIRNAS IN EPCS IN DISEASES 317
10.8 TARGETING MIRNAS IN EPC THERAPY 321
10.9 CONCLUSIONS AND FUTURE PERSPECTIVES 324
CHAPTER QUESTIONS 325
REFERENCES 326
ONLINE RESOURCES 329
FURTHER READING 329
Part 2 - Development 330
Chapter 11 - MicroRNA Function in Muscle Homeostasis and Regenerative Medicine 332
11.1 INTRODUCTION 333
11.2 BONE DEVELOPMENT AND REMODELING 334
11.3 SKELETAL MUSCLE DEVELOPMENT AND REGENERATION 336
11.4 MICRORNAS IN DIFFERENTIATION AND REGENERATIVE MEDICINE 337
11.5 CONCLUSIONS AND FUTURE PERSPECTIVES 347
CHAPTER QUESTIONS 348
REFERENCES 349
Chapter 12 - MicroRNAs in Skin Fibrosis 356
12.1 INTRODUCTION 357
12.2 MIRNA REGULATION OF SKIN FIBROSIS 360
12.3 CLINICAL APPLICATIONS OF MIRNAS IN SKIN FIBROSIS 367
12.4 CONCLUSIONS AND FUTURE PERSPECTIVES 369
CHAPTER QUESTIONS 369
ABBREVIATIONS AND ACRONYMS 370
REFERENCES 370
Chapter 13 - MicroRNAs in Hematopoietic Stem Cell Biology 374
GLOSSARY 375
13.1 INTRODUCTION 375
13.2 INVOLVEMENT OF MIRNAS IN HSC BIOLOGY 379
13.3 MIRNA REGULATION OF HSC RESPONSES TO INFLAMMATORY STRESS 382
13.4 MIRNAS AND HEMATOPOIETIC DISEASES 384
13.5 TRANSLATIONAL ASPECTS OF HEMATOPOIETIC MIRNAS 386
13.6 CONCLUSIONS AND FUTURE PERSPECTIVES 388
CHAPTER QUESTIONS 388
REFERENCES 389
FURTHER READING 393
Chapter 14 - miRNAs in Bone Formation and Homeostasis 394
GLOSSARY 395
14.1 INTRODUCTION 395
14.2 THE ROLE OF MIRNAS IN THE LIMB MESENCHYME 403
14.3 THE ROLE OF MIRNAS IN CHONDROCYTES 404
14.4 THE ROLE OF MIRNAS IN OSTEOBLASTS AND OSTEOPROGENITORS 408
14.5 THE ROLE OF MIRNAS IN OSTEOCLASTS 412
14.6 THE ROLE OF MIRNAS IN THE DIFFERENTIATION OF STEM CELLS 414
14.7 SKELETAL DISEASES AND MIRNAS 416
14.8 CONCLUSIONS AND FUTURE PERSPECTIVES 418
CHAPTER QUESTIONS 420
REFERENCES 420
ONLINE RESOURCES 425
FURTHER READING 425
Chapter 15 - Lung Development 426
Glossary 426
15.1 INTRODUCTION 427
15.2 MIRNAS AND LUNG DEVELOPMENT 430
15.3 MIRNAS AND LUNG DEVELOPMENTAL DISEASES 438
15.4 CONCLUSIONS AND FUTURE PERSPECTIVES 438
CHAPTER QUESTIONS 440
REFERENCES 441
ONLINE RESOURCE 444
FURTHER READING 444
Chapter 16 - MicroRNAs in Pancreas and Islet Development 446
GLOSSARY 446
16.1 INTRODUCTION 446
16.2 THE ROLE OF MIRNAS IN ADULT ISLET FUNCTION AND DIABETES 450
16.3 MIRNAS IN THE MOUSE AND HUMAN DEVELOPING PANCREAS 451
16.4 CONCLUSIONS AND FUTURE PERSPECTIVES 457
CHAPTER QUESTIONS 459
REFERENCES 460
ONLINE RESOURCES 463
FURTHER READING 463
Chapter 17 - MicroRNAs in Skeletal Muscle Differentiation 464
Glossary 465
17.1 INTRODUCTION 465
17.2 MYOMIRS 470
17.3 NONMUSCLE-SPECIFIC MIRNAS IN SKELETAL MUSCLE DEVELOPMENT 473
17.4 FUNCTIONAL CHARACTERIZATION OF MIRNAS IN MOUSE MODELS 478
17.5 MIRNAS AND SKELETAL MUSCLE DISEASES 482
17.6 CONCLUSIONS AND FUTURE PERSPECTIVES 485
CHAPTER QUESTIONS 485
REFERENCES 486
ONLINE RESOURCES 491
FURTHER READING 491
Chapter 18 - MicroRNAs in Brain Development 492
GLOSSARY 493
18.1 INTRODUCTION: FROM NEURAL PROGENITORS TO NEURAL NETWORKS 493
18.2 IMPLICATION OF MICRORNAS IN BRAIN DEVELOPMENT 503
18.3 MIRNA INVOLVEMENT IN THE STEPS OF BRAIN DEVELOPMENT 511
18.4 MIR-9 AND MIR-124: THE STARS OF THE FIELD 519
18.5 CONCLUSIONS AND FUTURE PERSPECTIVES 523
CHAPTER QUESTIONS 524
REFERENCES 526
FURTHER READING 533
Chapter 19 - MicroRNAs in the Retina and in Visual Connectivity 534
GLOSSARY 534
19.1 INTRODUCTION 535
19.2 GROSS ANATOMY AND PHYSIOLOGY OF THE MAMMALIAN RETINA 536
19.3 DEVELOPMENT OF THE MAMMALIAN EYE 540
19.4 ESTABLISHMENT OF VISUAL CONNECTIVITY 541
19.5 MIRNA EXPRESSION IN THE RETINA 542
19.6 MIRNAS AS A PROSPECTIVE TOOL IN REGENERATIVE MEDICINE FOR RETINAL DISEASE 550
19.7 CONCLUSIONS AND FUTURE PERSPECTIVES 553
CHAPTER QUESTIONS 555
REFERENCES 556
ONLINE RESOURCES 559
FURTHER READING 559
Chapter 20 - MicroRNAs in Neural Crest Development 560
GLOSSARY 561
20.1 INTRODUCTION 561
20.2 NEURAL CREST DEVELOPMENT 566
20.3 MIRNAS IN NEURAL CREST DEVELOPMENT 569
20.4 CONCLUSIONS AND FUTURE PERSPECTIVES 575
CHAPTER QUESTIONS 578
REFERENCES 578
ONLINE RESOURCES 583
FURTHER READING 583
Chapter 21 - Adipogenesis and Obesity 584
GLOSSARY 585
21.1 ADIPOSE TISSUE 585
21.2 ADIPOGENESIS 587
21.3 OBESITY 590
21.4 MIRNA REGULATION OF ADIPOGENESIS 591
21.5 MIRNAS IN OBESITY 597
21.6 FACTORS THAT INFLUENCE MIRNA EXPRESSION IN ADIPOSE TISSUE 600
21.7 CONCLUSIONS AND FUTURE PERSPECTIVES 604
CHAPTER QUESTIONS 606
REFERENCES 607
ONLINE RESOURCES 609
FURTHER READING 610
Part 3 - Repair 612
Chapter 22 - MicroRNAs with Mega Functions in Cardiac Remodeling and Repair: The Micromanagement of Matters of the Heart 614
GLOSSARY 615
22.1 INTRODUCTION 615
22.2 MIRNAS IN CARDIAC DEVELOPMENT AND FUNCTION 618
22.3 MIRNAS IN CARDIAC REMODELING 620
22.4 MODULATION OF MIRNA EXPRESSION TO LIMIT REMODELING AND FOR MYOCARDIAL REPAIR 626
22.5 MIRNAS IN CARDIAC DYSFUNCTION 633
22.6 CONCLUSIONS AND FUTURE PERSPECTIVES 635
CHAPTER QUESTIONS 636
REFERENCES 637
ONLINE RESOURCES 645
FURTHER READING 645
Chapter 23 - MicroRNAs in Vascular Remodeling and Repair 646
23.1 INTRODUCTION 647
23.2 MIRNAS IN VASCULAR REMODELING 653
23.3 MIRNAS IN TISSUE REGENERATION 658
23.4 MIRNAS IN REGENERATIVE CELL THERAPY 661
23.5 CONCLUSIONS AND FUTURE PERSPECTIVES 667
CHAPTER QUESTIONS 668
REFERENCES 669
ONLINE RESOURCES 674
FURTHER READING 674
Chapter 24 - Skin Wound Healing 676
24.1 INTRODUCTION 677
24.2 ANATOMY OF THE SKIN 678
24.3 THE WOUND-HEALING CASCADE 680
24.4 EPIGENETIC CONTROL OF WOUND HEALING 683
24.5 MICRORNAS—REGULATORS OF GENE EXPRESSION 684
24.6 MIRNAS IN THE PHASES OF WOUND HEALING 686
24.7 MIRNA-BASED THERAPEUTICS 689
24.8 CONCLUSIONS AND FUTURE PERSPECTIVES 691
CHAPTER QUESTIONS 691
REFERENCES 693
Chapter 25 - miRNAs in Bone Repair 698
25.1 INTRODUCTION 699
25.2 BONE REMODELING AND BONE REPAIR 704
25.3 MIRNAS IN FRACTURE REPAIR 707
25.4 MIRNAS IN OSTEOBLASTS 709
25.5 MIRNAS IN VASCULAR ENDOTHELIAL CELLS 716
25.6 MIRNAS IN OSTEOCLASTS 719
25.7 CHALLENGES FOR MIRNA-BASED THERAPEUTICS IN BONE REPAIR 721
25.8 CONCLUSIONS AND FUTURE PERSPECTIVES 722
CHAPTER QUESTIONS 723
REFERENCES 724
ONLINE RESOURCES 728
FURTHER READING 728
Chapter 26 - MicroRNAs as Future Therapeutic Targets for Spinal Cord Injury 730
26.1 INTRODUCTION 731
26.2 THE LACK OF CENTRAL NERVOUS SYSTEM REGENERATION IN PRIMATES 731
26.3 MIRNA INVOLVEMENT IN SPINAL CORD DEVELOPMENT AND FOLLOWING SPINAL CORD INJURY 735
26.4 CONCLUSIONS AND FUTURE PERSPECTIVES 745
CHAPTER QUESTIONS 748
REFERENCES 749
Online Resources 755
FURTHER READING 755
Chapter 27 - MicroRNA Regulation of Angiogenesis 756
GLOSSARY 756
27.1 INTRODUCTION 757
27.2 ANGIOGENESIS VERSUS VASCULOGENESIS 757
27.3 MICRORNAS 760
27.4 THE ROLE OF MIRNAS IN ENDOTHELIAL CELLS 762
27.5 TRANSLATION FROM BENCH TO CLINIC 773
27.6 CONCLUSIONS AND FUTURE PERSPECTIVES 777
CHAPTER QUESTIONS 778
REFERENCES 779
FURTHER READING 782
Chapter 28 - Micromanaging Inflammation and Tissue Repair 784
GLOSSARY 784
28.1 INTRODUCTION 785
28.2 MIRNAS IN INFLAMMATION CONTROL 786
28.3 MIRNA CONTROL OF INFLAMMATORY MEDIATORS 792
28.4 CONCLUSIONS AND FUTURE PERSPECTIVES 796
CHAPTER QUESTIONS 796
ACKNOWLEDGMENT 797
REFERENCES 797
ONLINE RESOURCES 801
FURTHER READING 801
Chapter 29 - MicroRNA Regulation of mTOR Function 802
GLOSSARY 803
29.1 INTRODUCTION 803
29.2 THE MTOR PROTEIN 804
29.3 MTOR IN CANCER 806
29.4 MTOR IN THE NERVOUS SYSTEM 808
29.5 MECHANISMS OF MTOR REGULATION 810
29.6 MIRNA REGULATION OF MTOR FUNCTION 817
MTOR-MEDIATED NS REGENERATION 827
29.8 CONCLUSIONS AND FUTURE PERSPECTIVES 828
CHAPTER QUESTIONS 829
REFERENCES 831
ONLINE RESOURCES 834
FURTHER READING 835
Chapter 30 - OxymiRs in Regenerative Medicine 836
30.1 INTRODUCTION 837
30.2 OXYMIRS IN DEVELOPMENTAL BIOLOGY 840
30.3 OXYMIRS IN WOUND HEALING 844
30.4 OXYMIRS IN STEM CELL REGENERATION 847
30.5 OXYMIRS IN TISSUE ENGINEERING AND REGENERATIVE MEDICINE 850
30.6 CONCLUSIONS AND FUTURE PERSPECTIVES 853
CHAPTER QUESTIONS 853
ABBREVIATIONS 854
References 855
FURTHER READING 862
Chapter 31 - MicroRNAs and Exosomes in Cancer Diagnosis and Therapy 864
GLOSSARY 865
31.1 INTRODUCTION 865
31.2 MIRNA BIOGENESIS 865
31.3 EXOSOME BIOGENESIS 866
31.4 EXOSOMES IN MIRNA BIOGENESIS 867
31.5 THE LINK BETWEEN EXOSOMES AND MIRNA EXPRESSION PATTERNS 867
31.6 THE LINK BETWEEN EXOSOMES AND MIRNA BIOLOGICAL FUNCTION AND ITS APPLICATION TO CANCER 870
31.7 CONCLUSIONS AND FUTURE PERSPECTIVES 875
CHAPTER QUESTIONS 876
REFERENCES 876
ONLINE RESOURCES 879
FURTHER READING 879
Chapter 32 - Organ Transplantation and MicroRNA Expression 880
32.1 INTRODUCTION 881
32.2 COMPONENTS OF SUCCESSFUL TRANSPLANTATION 881
32.3 ALLOGRAFT REJECTION 884
32.4 ALLOGRAFT TOLERANCE 885
32.5 NONIMMUNOLOGIC ALLOGRAFT INJURY 886
32.6 MIRNAS AS EFFECTIVE BIOMARKERS 887
32.7 THERAPEUTIC POTENTIAL OF MIRNA MODULATION 888
32.8 EXAMPLES OF MIRNAS IMPLICATED IN SOLID ORGAN TRANSPLANTATION 889
32.9 CONCLUSIONS AND FUTURE PERSPECTIVES 901
CHAPTER QUESTIONS 903
REFERENCES 904
ONLINE RESOURCES 907
FURTHER READING 907
Part 4 - Regeneration 908
Chapter 33 - MicroRNAs in the Control of Neurogenesis in the Developing Cerebral Cortex 910
GLOSSARY 911
33.1 INTRODUCTION 911
33.2 MATURE MIRNAS IN CORTICAL NEUROGENESIS 917
33.3 SPECIFIC MIRNAS IN THE FINE-TUNING OF CORTICAL NEUROGENESIS 923
33.4 CONCLUSIONS AND FUTURE DIRECTIONS 930
Chapter Questions 931
ACKNOWLEDGMENTS 932
REFERENCES 932
ONLINE RESOURCES 936
Chapter 34 - miRNAs in Transitions: EMT, MET, and EndoMT 938
GLOSSARY 939
34.1 INTRODUCTION 939
34.2 MIRNAS IN EMT, MET, AND ENDOMT 945
34.3 EMT-REGULATING MIRNAS 945
34.4 ENDOMT-REGULATING MIRNAS 951
34.5 MET IN SOMATIC REPROGRAMMING 952
34.6 CONCLUSIONS AND FUTURE PERSPECTIVES 955
CHAPTER QUESTIONS 956
REFERENCES 957
FURTHER READING 960
Chapter 35 - MicroRNAs in Cardiac Regeneration 962
GLOSSARY 963
35.1 INTRODUCTION 963
35.2 CELL TRANSPLANTATION IN CARDIAC REGENERATION 964
35.3 TISSUE TRANSPLANTATION IN CARDIAC REGENERATION 968
35.4 MICRORNAS IN CARDIAC REGENERATION 969
35.5 CONCLUSIONS AND FUTURE PERSPECTIVES 981
CHAPTER QUESTIONS 984
REFERENCES 984
FURTHER READING 987
Chapter 36 - MicroRNAs in Liver Regeneration 988
GLOSSARY 989
36.1 INTRODUCTION 989
36.2 DIFFERENTIAL REGULATION OF MICRORNAS DURING LIVER REGENERATION 992
36.3 MIRNA DELIVERY 1000
36.4 MIRNAS IN THE TREATMENT OF LIVER DISEASES 1002
36.5 DIFFICULTIES IN STUDYING MIRNAS IN LIVER REGENERATION 1003
36.6 CONCLUSIONS AND FUTURE PERSPECTIVES 1003
CHAPTER QUESTIONS 1004
REFERENCES 1005
ONLINE RESOURCES 1010
Part 5 - Methodology 1012
Chapter 37 - MicroRNA Technology and Small-Molecule Delivery 1014
GLOSSARY 1014
37.1 INTRODUCTION 1015
37.2 MECHANISMS OF RNAI IN PHYSIOLOGY AND PATHOLOGY 1019
37.3 THERAPEUTIC DELIVERY OF RNAI 1020
37.4 MIRNA-BASED ADENOSINE AUGMENTATION IN EPILEPSY 1024
37.5 SAFETY CONCERNS 1026
37.6 CONCLUSIONS AND FUTURE PERSPECTIVES 1026
CHAPTER QUESTIONS 1028
REFERENCES 1029
Part 6 - Intervention 1034
Chapter 38 - Drug–MicroRNA Cross-Talk 1036
38.1 INTRODUCTION 1037
38.2 MIRNAS AND THEIR IMPACT ON DRUG METABOLISM 1042
38.3 MIRNAS AS DRUGS 1055
38.4 CONCLUSIONS AND FUTURE PERSPECTIVES 1056
CHAPTER QUESTIONS 1057
ACKNOWLEDGMENTS 1058
REFERENCES 1058
Chapter 39 - Delivery and Biological Activity of Therapeutic miRNAs and miRNA Modifiers 1062
39.1 INTRODUCTION 1063
39.2 ALTERING MIRNA FUNCTIONS AS A NOVEL THERAPEUTIC APPROACH 1064
39.3 BIOMOLECULES FOR MIRNA THERAPEUTICS 1069
39.4 PHYSICAL APPROACHES FOR MIRNA DELIVERY 1069
39.5 VECTOR-BASED MIRNA DELIVERY AND EXPRESSION 1070
39.6 NONVIRAL DELIVERY 1071
39.7 CHEMICAL MODIFICATIONS OF ANTI-MIRNAS OR MIRNA-MIMICKING MOLECULES 1073
39.8 SELECTED EXAMPLES OF MIRNA REPLACEMENT THERAPEUTICS 1076
39.9 SELECTED EXAMPLES OF MIRNA-TARGETING THERAPEUTICS 1078
39.10 A NOVEL FRONTIER: MIRNA REPLACEMENT AND MIRNA TARGETING FOR IPSC PRODUCTION 1081
39.11 CONCLUSIONS AND FUTURE PERSPECTIVES 1084
CHAPTER QUESTIONS 1084
ACKNOWLEDGMENTS 1085
REFERENCES 1085
ONLINE RESOURCES 1092
FURTHER READING 1092
Chapter 40 - RNA-Based Therapies for Bone Diseases 1094
40.2 THE CELLS AND MECHANISMS OF BONE METABOLISM 1096
40.3 MIRNAS: FROM DISCOVERY TO MODERN EXPERIMENTS 1100
40.4 MIRNAS IN SKELETON PATTERNING: OSTEOBLASTS AND OSTEOCLASTS IN BONE, AND CHONDROCYTES IN CARTILAGE 1105
40.5 MIRNAS AND DISEASES 1110
40.6 NEW FRONTIERS: INTERACTION BETWEEN MIRNAS AND BIOMATERIALS 1111
40.7 CONCLUSIONS AND FUTURE PERSPECTIVES 1112
CHAPTER QUESTIONS 1113
ACKNOWLEDGMENT 1114
REFERENCES 1114
Chapter 41 - MicroRNA-Mediated Regulation of Cardiovascular Differentiation and Therapeutic Implications 1120
41.1 INTRODUCTION 1121
41.2 MIRNAS AND STEM CELL DIFFERENTIATION INTO CARDIOVASCULAR CELLS 1122
41.3 MIRNAS AND PARACRINE MECHANISMS THAT AFFECT CARDIAC WOUND HEALING 1125
41.4 MYOCARDIAL REGENERATION WITH MIRNA-MODULATED STEM CELLS 1128
41.5 CONCLUSIONS AND FUTURE PERSPECTIVES 1131
CHAPTER QUESTIONS 1131
REFERENCES 1132
FURTHER READING 1136
Chapter 42 - Circulating MicroRNAs as Biomarkers 1138
42.1 INTRODUCTION 1139
42.2 EVALUATING CIRCULATING MIRNA EXPRESSION 1142
42.3 CIRCULATING MIRNAS IN LUNG DISEASE 1143
42.4 CIRCULATING MIRNAS IN CARDIOVASCULAR DISEASES 1149
42.5 EXTRACELLULAR MIRNAS IN SEPSIS THE ICU AND VIRAL DISEASES 1152
42.6 BEYOND BIOMARKERS 1155
42.7 CONCLUSIONS AND FUTURE PERSPECTIVES 1161
CHAPTER QUESTIONS 1162
ACKNOWLEDGMENT 1163
REFERENCES 1163
ONLINE RESOURCES 1169
FURTHER READING 1170
Part 7 - Tissue Engineering 1172
Chapter 43 - Nuclear Architecture and Transcriptional Regulation of MicroRNAs 1174
GLOSSARY 1175
43.1 INTRODUCTION 1175
43.2 HIGHER-ORDER DNA STRUCTURE 1176
43.3 NUCLEAR ORGANIZATION 1177
43.4 GENE REGULATORY ELEMENTS 1182
43.5 DNA-DEPENDENT RNA TRANSCRIPTION 1184
43.6 NONCODING RNA 1188
43.7 MICRORNAS 1188
43.8 CONCLUSIONS AND FUTURE PERSPECTIVES 1198
CHAPTER QUESTIONS 1200
ACKNOWLEDGMENTS 1200
REFERENCES 1201
FURTHER READING 1203
Chapter 44 - MicroRNAs in Tissue Engineering and Regenerative Medicine 1204
44.1 INTRODUCTION 1205
44.2 MIRNA BIOGENESIS AND FUNCTION 1205
44.3 METHODS FOR IDENTIFYING MIRNA–MRNA INTERACTIONS 1215
44.4 MIRNAS IN CELL AND TISSUE DEVELOPMENT 1219
AND TISSUE ENGINEERING 1225
44.6 CONCLUSIONS AND FUTURE PERSPECTIVES 1232
CHAPTER QUESTIONS 1233
REFERENCES 1233
Glossary 1246
Index 1274
A 1274
B 1275
C 1277
D 1280
E 1281
F 1283
G 1283
H 1284
I 1286
J 1287
K 1287
L 1287
M 1288
N 1294
O 1295
P 1296
R 1298
S 1300
T 1302
U 1303
V 1303
W 1304
X 1304
Y 1304
Z 1304
Contributors
Aamir Ahmad, Departments of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, USA
Mir Farshid Alemdehy, Department of Hematology, Erasmus University Medical Center Cancer Institute, Rotterdam, The Netherlands
Tyler Anderson, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Davis Heart and Lung Research Institute and College of Medicine, The Ohio State University, USA
Hamdy Awad, Department of Anesthesiology, The Ohio State University Wexner Medical Center, USA
Asha Balakrishnan, Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Germany
Mumtaz Yaseen Balkhi
Department of Molecular Virology, Immunology, and Medical Genetics, Human Cancer Genetics Program
Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus
Division of Surgical Research, Boston University School of Medicine Roger Williams Medical Center, USA
Laure Bally-Cuif, Team Zebrafish Neurogenetics, A. Fessard Institute of Neurobiology, Laboratory of Neurobiology and Development, France
Jaideep Banerjee, Center for Regenerative Medicine and Cell-Based Therapies, The Ohio State University Wexner Medical Center, USA
Bin Bao, Departments of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, USA
Christopher Taylor Barry, Division of Solid Organ Transplant and Hepatobiliary Surgery, University of Rochester, USA
Christophe Beclin, Aix-Marseille University, CNRS, IBDM, France
Detlev Boison, Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, USA
Andreas Bosio, Miltenyi Biotec GmbH, Germany
Maria Luisa Brandi, Department of Surgery and Translational Medicine, University of Florence, Italy
Melissa Brown, Molecular Genetics Program, College of Arts and Science, The Ohio State University, USA
George A. Calin, Department of Experimental Therapeutics, M.D. Anderson Cancer Center, University of Texas at Houston Health Science Center, USA
Yang Cao, Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong , The People’s Republic of China
Maurizio C. Capogrossi, Laboratorio di Patologia Vascolare, Istituto Dermopatico dell’Immacolata-IRCCS, Italy
Andrea Caporali, Bristol Heart Institute, University of Bristol, UK
Christian Carulli, Department of Surgery and Translational Medicine, University of Florence, Italy
Yuk Cheung Chan, Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, The People’s Republic of China
Pavithra L. Chavali, Cancer Research UK Cambridge Institute, University of Cambridge, UK
Sreenivas Chavali, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
Alex F. Chen, Department of Surgery, University of Pittsburgh Medical Center, USA
Xiaona Chen, Department of Obstetrics and Gynaecology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, The People’s Republic of China
Charles Cook, Department of Surgery, Davis Heart and Lung Research Institute and College of Medicine, The Ohio State University, USA
Marion Coolen, Team Zebrafish Neurogenetics, A. Fessard Institute of Neurobiology, Laboratory of Neurobiology and Development, France
Harold Cremer, Aix-Marseille University, CNRS, IBDM, France
Catherine Czeisler, Center for Regenerative Medicine and Cell-Based Therapies, Department of Pathology, College of Medicine, The Ohio State University, USA
Duaa Dakhlallah, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Davis Heart and Lung Research Institute and College of Medicine, The Ohio State University, USA
Amitava Das, Department of Surgery, Center for Regenerative Medicine and Cell-Based Therapies and Comprehensive Wound Center, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, USA
Anne M. Delany, Center for Molecular Medicine, University of Connecticut Health Center, USA
Dasa Dolezalova
Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
Juan Domínguez-Bendala, Diabetes Research Institute, Leonard M. Miller School of Medicine, University of Miami, USA
Costanza Emanueli, Bristol Heart Institute, University of Bristol, UK
Stefan J. Erkeland, Department of Hematology, Erasmus University Medical Center Cancer Institute, Rotterdam, The Netherlands
Michael Ezzie, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Davis Heart and Lung Research Institute and College of Medicine, The Ohio State University, USA
Pasquale Fasanaro, Laboratorio di Patologia Vascolare, Istituto Dermopatico dell’Immacolata-IRCCS, Italy
Ariana Foinquinos, Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Germany
Tiziana Franceschetti, Center for Molecular Medicine, University of Connecticut Health Center, USA
Roberto Gambari, Department of Life Sciences and Biotechnology, University of Ferrara, Section of Biochemistry and Molecular Biology, Italy
Shazia Ahmad, Boston University Medical Center, Boston, USA
Subhadip Ghatak, Center for Regenerative Medicine and Cell-Based Therapies, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, USA
Le Luo Guan, Department of Agricultural, Food and Nutritional Science, University of Alberta, USA
Denis C. Guttridge
Department of Molecular Virology, Immunology, and Medical Genetics, Human Cancer Genetics Program
Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, USA
Patrick Edwin Gygli, Center for Regenerative Medicine and Cell-Based Therapies, Department of Pathology, College of Medicine, The Ohio State University, USA
Khawaja H. Haider, Department of Pathology, University of Cincinnati, USA
Aleš Hampl
Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
Martin C. Harmsen, University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Cardiovascular Regenerative Medicine Research Group (CAVAREM), The Netherlands
Yoshinori Hasegawa, Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Japan
Robert Hindges, MRC Centre for Developmental Neurobiology, King’s College, UK
Myron Hinsdale, Department of Physiological Sciences, Oklahoma State University, USA
John D. Houlé, Department of Neurobiology and Anatomy, Spinal Cord Research Center, Drexel University College of Medicine, USA
Lynsey Howard, Bristol Heart Institute, University of Bristol, UK
Derryn Xin Hui Chan, Institute of Medical Biology, Agency for Science, Technology and Research (A∗STAR), Singapore
Shunsuke Ichi, Department of Neurosurgery, Jikei University School of Medicine, Japan
Massimo Innocenti, Department of Surgery and Translational Medicine,...
Erscheint lt. Verlag | 26.11.2014 |
---|---|
Sprache | englisch |
Themenwelt | Informatik ► Weitere Themen ► Bioinformatik |
Naturwissenschaften ► Biologie ► Genetik / Molekularbiologie | |
Naturwissenschaften ► Biologie ► Mikrobiologie / Immunologie | |
Technik | |
ISBN-10 | 0-12-405858-2 / 0124058582 |
ISBN-13 | 978-0-12-405858-3 / 9780124058583 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 54,5 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
Größe: 24,9 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich