Monodromy and Asymptotic Integrals
Birkhauser Boston Inc (Verlag)
978-0-8176-3185-7 (ISBN)
- Titel ist leider vergriffen;
keine Neuauflage - Artikel merken
Such topics as, for example, decomposition of singularities, the connection between singularities and Lie algebras and the asymptotic behaviour of different integrals depending on parameters become clearer in the complex domain. The book consists of three parts. In the first part we consider the topological structure of isolated critical points of holomorphic functions. We describe the fundamental topological characteristics of such critical points: vanishing cycles, distinguished bases, intersection matrices, monodromy groups, the variation operator and their interconnections and method of calculation.
I The topological structure of isolated critical points of functions.- 1 Elements of the theory of Picard-Lefschetz.- 2 The topology of the non-singular level set and the variation operator of a singularity.- 3 The bifurcation sets and the monodromy group of a singularity.- 4 The intersection matrices of singularities of functions of two variables.- 5 The intersection forms of boundary singularities and the topology of complete intersections.- II Oscillatory integrals.- 6 Discussion of results.- 7 Elementary integrals and the resolution of singularities of the phase.- 8 Asymptotics and Newton polyhedra.- 9 The singular index, examples.- III Integrals of holomorphic forms over vanishing cycles.- 10 The simplest properties of the integrals.- 11 Complex oscillatory integrals.- 12 Integrals and differential equations.- 13 The coefficients of series expansions of integrals, the weighted and Hodge filtrations and the spectrum of a critical point.- 14 The mixed Hodge structure of an isolated critical point of a holomorphic function.- 15 The period map and the intersection form.- References.
Reihe/Serie | Singularities of Differntiable Maps ; BD 2 | 1.20 |
---|---|
Zusatzinfo | 5 black & white illustrations, biography |
Verlagsort | Secaucus |
Sprache | englisch |
Gewicht | 1135 g |
Einbandart | gebunden |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
ISBN-10 | 0-8176-3185-2 / 0817631852 |
ISBN-13 | 978-0-8176-3185-7 / 9780817631857 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich