Probability Measures on Metric Spaces (eBook)
288 Seiten
Elsevier Science (Verlag)
978-1-4832-2525-8 (ISBN)
Probability Measures on Metric Spaces presents the general theory of probability measures in abstract metric spaces. This book deals with complete separable metric groups, locally impact abelian groups, Hilbert spaces, and the spaces of continuous functions. Organized into seven chapters, this book begins with an overview of isomorphism theorem, which states that two Borel subsets of complete separable metric spaces are isomorphic if and only if they have the same cardinality. This text then deals with properties such as tightness, regularity, and perfectness of measures defined on metric spaces. Other chapters consider the arithmetic of probability distributions in topological groups. This book discusses as well the proofs of the classical extension theorems and existence of conditional and regular conditional probabilities in standard Borel spaces. The final chapter deals with the compactness criteria for sets of probability measures and their applications to testing statistical hypotheses. This book is a valuable resource for statisticians.
Fron Cover 1
Probability Measures on Metric Spaces 4
Copyright Page 5
Table of Contents 10
Preface 6
Chapter
14
1. General Properties of Borel Sets 14
2. The Isomorphism Theorem 20
3. The Kuratowski Theorem 28
4. Borel Cross Sections in Compact Metric Spaces 35
5. Borel Cross Sections in Locally Compact Groups 37
Chapter
39
1. Regular Measures 39
2. Spectrum of a Measure 40
3. Tight Measures 41
4. Perfect Measures 43
5. Linear Functionals and Measures 45
6. The Weak Topology in the Space of Measures 52
7. Convergence of Sample Distributions 65
8. Existence of Nonatomic Measures in Metric Spaces 66
Chapter
69
1. The Convolution Operation 69
2. Shift Compactness in M(X) 71
3. Idempotent Measures 74
4. Indecomposable Measures 76
5. The Case When X Is Abelian 83
Chapter VI.
86
1. Introduction 86
2. Preliminary Facts about a Group and Its Character Group 87
3. Measures and Their Fourier Transforms 87
4. Infinitely Divisible Distributions 90
5. General Limit Theorems for Sums of Infinitesimal Summands 95
6. Gaussian Distributions 110
7. Representation of Infinitely Divisible Distributions 115
8. Uniqueness of the Representation 122
9. Compactness Criteria 126
10. Representation of Convolution Semigroups 129
11. A Decomposition Theorem 131
12. Absolutely Continuous Indecomposable Distributions in X 133
Chapter
144
1. Statement of the First Problem 144
2. Standard Borel Spaces 145
3. The Consistency Theorem in the Case of Inverse Limits of Borel Spaces 150
4. The Extension Theorem 153
5. The Kolmogorov Consistency Theorem 156
6. Statement of the Second Problem 157
7. Existence of Conditional Probability 158
8. Regular Conditional Probability 159
Chapter
164
1. Introduction 164
2. Characteristic Functions and Compactness Criteria 164
3. An Estimate of the Variance 178
4. Infinitely Divisible Distributions 183
5. Compactness Criteria 195
6. Accompanying Laws 202
7. Representation of Convolution Semigroups 214
8. Decomposition Theorem 214
9. Ergodic Theorems 215
Chapter
224
1. Introduction 224
2. Probability Measures on C[0, 1] 225
3. A Condition for the Realization of a Stochastic Process in
228
4. Convergence to Brownian Motion 232
5. Distributions of Certain Random Variables Associated with the Brownian Motion 237
7. Probability Measures in
262
8. Ergodic Theorems for D-Valued Random Variables 267
9. Applications to Statistical Tests of Hypothesis 272
Bibliographical Notes 281
Bibliography 283
List of Symbols 286
Author Index 287
Subject Index 288
Erscheint lt. Verlag | 3.7.2014 |
---|---|
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Technik | |
ISBN-10 | 1-4832-2525-9 / 1483225259 |
ISBN-13 | 978-1-4832-2525-8 / 9781483225258 |
Haben Sie eine Frage zum Produkt? |
Größe: 12,1 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich