Symbolic Logic and Mechanical Theorem Proving (eBook)
331 Seiten
Elsevier Science (Verlag)
978-0-08-091728-3 (ISBN)
This book contains an introduction to symbolic logic and a thorough discussion of mechanical theorem proving and its applications. The book consists of three major parts. Chapters 2 and 3 constitute an introduction to symbolic logic. Chapters 4-9 introduce several techniques in mechanical theorem proving, and Chapters 10 an 11 show how theorem proving can be applied to various areas such as question answering, problem solving, program analysis, and program synthesis.
Front Cover
1
Symbolic Logic and
4
Copyright Page 5
Table of
8
Dedication 6
Preface 12
Acknowledgments 14
Chapter
18
1.1 Artificial Intelligence, Symbolic Logic, and Theorem Proving 18
1.2 Mathematical Background 21
References 22
Chapter
23
2.1 Introduction 23
2.2 Interpretations of Formulas in the Propositional Logic 25
2.3 Validity and Inconsistency in the Propositional Logic 27
2.4 Normal Forms in the Propositional
29
2.5 Logical Consequences 32
2.6 Applications of the Propositional Logic 36
References 40
Exercises 40
Chapter
43
3.1 Introduction 43
3.2 Interpretations of Formulas in the First-Order Logic 47
3.3 Prenex Normal Forms in the First-Order Logic 52
3.4 Applications of the First-Order
56
References 58
Exercises 58
Chapter
62
4.1 Introduction 62
4.2 Skolem Standard Forms 63
4.3 The Herbrand Universe of a Set of Clauses 68
4.4 Semantic Trees 73
4.5 Herbrand's
77
4.6 Implementation of Herbrand's Theorem 79
References 83
Exercises 84
Chapter
87
5.1 Introduction 87
5.2 The Resolution Principle for the Propositional Logic 88
5.3 Substitution and Unification 91
5.4 Unification Algorithm 94
5.5 The Resolution Principle for the First-Order Logic 97
5.6 Completeness of the Resolution Principle 100
5.7 Examples Using the Resolution
103
5.8 Deletion Strategy 109
References 114
Exercises 114
Chapter
117
6.1 Introduction 117
6.2 An Informal Introduction to Semantic Resolution 118
6.3 Formal Definitions and Examples of Semantic Resolution 121
6.4 Completeness of Semantic Resolution 123
6.5 Hyperresolution and the Set-of-Support Strategy: Special Cases of Semantic Resolution 124
6.6 Semantic Resolution Using Ordered Clauses 128
6.7 Implementation of Semantic Resolution 134
6.8 Lock Resolution 137
6.9 Completeness of Lock
141
References 142
Exercises 143
Chapter
147
7.1 Introduction 147
7.2 Linear Resolution 148
7.3 Input Resolution and Unit Resolution 149
7.4 Linear Resolution Using
152
7.5 Completeness of Linear Resolution 159
7.6 Linear Deduction and Tree
162
7.7 Heuristics in Tree Searching 169
7.8 Estimations of Evaluation Functions 171
References 175
Exercises 176
Chapter
180
8.1 Introduction 180
8.2 Unsatisfiability under Special Classes of Models 182
8.3 Paramodulation—An Inference Rule for Equality 185
8.4 Hyperparamodulation 187
8.5 Input and Unit Paramodulations 190
8.6 Linear Paramodulation 195
References 197
Exercises 198
Chapter
201
9.1 Introduction 201
9.2 The Prawitz Procedure 202
9.3 The V-Resolution Procedure 206
9.4 Pseudosemantic Trees 214
9.5 A Procedure for Generating Closed Pseudosemantic Trees 216
9.6 A Generalization of the Splitting Rule of Davis and Putnam 222
References 224
Exercises 225
Chapter
227
10.1 Introduction 227
10.2 An Informal Discussion 228
10.3 Formal Définitions of Programs 230
10.4 Logical Formulas Describing the Execution of a Program 233
10.5 Program Analysis by Resolution 234
10.6 The Termination and Response of Programs 239
10.7 The Set-of-Support Strategy and the Deduction of the Halting Clause 242
10.8 The Correctness and Equivalence of Programs 244
10.9 The Specialization of Programs 245
References 248
Exercises 249
Chapter 11. Deductive Question Answering, Problem Solving, and Program Synthesis 251
11.1 Introduction 251
11.2 Class A Questions 253
11.3 Class B Questions 254
11.4 Class C Questions 257
11.5 Class D Questions 260
11.6 Completeness of Resolution for Deriving Answers 267
11.7 The Principles of Program Synthesis 268
11.8 Primitive Resolution and Algorithm A
275
11.9 The Correctness of Algorithm
284
11.10 The Application of Induction Axioms to Program Synthesis 288
11.11 Algorithm A (An Improved Program-Synthesizing Algorithm 292
References 296
Exercises 297
Chapter
300
References 301
Appendix A 304
A.l A Computer Program Using Unit Binary Resolution 304
A.2 Brief Comments on the Program 307
A.3 A Listing of the Program 309
A.4 Illustrations 315
References 322
Appendix B 323
Bibliography 326
INDEX 342
Erscheint lt. Verlag | 28.6.2014 |
---|---|
Sprache | englisch |
Themenwelt | Informatik ► Theorie / Studium ► Algorithmen |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Mathematik / Informatik ► Mathematik ► Logik / Mengenlehre | |
Technik | |
ISBN-10 | 0-08-091728-3 / 0080917283 |
ISBN-13 | 978-0-08-091728-3 / 9780080917283 |
Haben Sie eine Frage zum Produkt? |
Größe: 14,8 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich