Introductory Statistics and Analytics (eBook)
320 Seiten
John Wiley & Sons (Verlag)
978-1-118-88166-8 (ISBN)
statistical concepts in the concepts in the context of analytics,
resampling, and the bootstrap
A uniquely developed presentation of key statistical topics,
Introductory Statistics and Analytics: A Resampling
Perspective provides an accessible approach to statistical
analytics, resampling, and the bootstrap for readers with various
levels of exposure to basic probability and statistics. Originally
class-tested at one of the first online learning companies in the
discipline, www.statistics.com, the book primarily focuses on
applications of statistical concepts developed via resampling, with
a background discussion of mathematical theory. This feature
stresses statistical literacy and understanding, which demonstrates
the fundamental basis for statistical inference and demystifies
traditional formulas.
The book begins with illustrations that have the essential
statistical topics interwoven throughout before moving on to
demonstrate the proper design of studies. Meeting all of the
Guidelines for Assessment and Instruction in Statistics Education
(GAISE) requirements for an introductory statistics course,
Introductory Statistics and Analytics: A Resampling
Perspective also includes:
* Over 300 "Try It Yourself" exercises and
intermittent practice questions, which challenge readers at
multiple levels to investigate and explore key statistical
concepts
* Numerous interactive links designed to provide solutions to
exercises and further information on crucial concepts
* Linkages that connect statistics to the rapidly growing field
of data science
* Multiple discussions of various software systems, such as
Microsoft Office Excel®, StatCrunch, and R, to develop and
analyze data
* Areas of concern and/or contrasting points-of-view indicated
through the use of "Caution" icons
Introductory Statistics and Analytics: A Resampling
Perspective is an excellent primary textbook for courses in
preliminary statistics as well as a supplement for courses in
upper-level statistics and related fields, such as biostatistics
and econometrics. The book is also a general reference for readers
interested in revisiting the value of statistics.
Peter C. Bruce is President and Founder of the Institute for Statistics Education at www.statistics.com. He has written multiple journal articles and is the developer of Resampling Stats software. Mr. Bruce is the coauthor of Data Mining for Business Intelligence: Concepts, Techniques, and Applications in Microsoft Office Excel with XLMiner¯®, Second Edition, also published by Wiley.
Preface ix
Acknowledgments xi
Introduction xiii
1 Designing and Carrying Out a Statistical Study 1
1.1 A Small Example, 3
1.2 Is Chance Responsible? The Foundation of Hypothesis Testing, 3
1.3 A Major Example, 7
1.4 Designing an Experiment, 8
1.5 What to Measure--Central Location, 13
1.6 What to Measure--Variability, 16
1.7 What to Measure--Distance (Nearness), 19
1.8 Test Statistic, 21
1.9 The Data, 22
1.10 Variables and Their Flavors, 28
1.11 Examining and Displaying the Data, 31
1.12 Are we Sure we Made a Difference? 39
Appendix: Historical Note, 39
1.13 Exercises, 40
2 Statistical Inference 45
2.1 Repeating the Experiment, 46
2.2 How Many Reshuffles? 48
2.3 How Odd is Odd? 53
2.4 Statistical and Practical Significance, 55
2.5 When to use Hypothesis Tests, 56
2.6 Exercises, 56
3 Displaying and Exploring Data 59
3.1 Bar Charts, 59
3.2 Pie Charts, 61
3.3 Misuse of Graphs, 62
3.4 Indexing, 64
3.5 Exercises, 68
4 Probability 71
4.1 Mendel's Peas, 72
4.2 Simple Probability, 73
4.3 Random Variables and their Probability Distributions, 77
4.4 The Normal Distribution, 80
4.5 Exercises, 84
5 Relationship between Two Categorical Variables 87
5.1 Two-Way Tables, 87
5.2 Comparing Proportions, 90
5.3 More Probability, 92
5.4 From Conditional Probabilities to Bayesian Estimates, 95
5.5 Independence, 97
5.6 Exploratory Data Analysis (EDA), 99
5.7 Exercises, 100
6 Surveys and Sampling 104
6.1 Simple Random Samples, 105
6.2 Margin of Error: Sampling Distribution for a Proportion, 109
6.3 Sampling Distribution for a Mean, 111
6.4 A Shortcut--the Bootstrap, 113
6.5 Beyond Simple Random Sampling, 117
6.6 Absolute Versus Relative Sample Size, 120
6.7 Exercises, 120
7 Confidence Intervals 124
7.1 Point Estimates, 124
7.2 Interval Estimates (Confidence Intervals), 125
7.3 Confidence Interval for a Mean, 126
7.4 Formula-Based Counterparts to the Bootstrap, 126
7.5 Standard Error, 132
7.6 Confidence Intervals for a Single Proportion, 133
7.7 Confidence Interval for a Difference in Means, 136
7.8 Confidence Interval for a Difference in Proportions, 139
7.9 Recapping, 140
Appendix A: More on the Bootstrap, 141
Resampling Procedure--Parametric Bootstrap, 141
Formulas and the Parametric Bootstrap, 144
Appendix B: Alternative Populations, 144
Appendix C: Binomial Formula Procedure, 144
7.10 Exercises, 147
8 Hypothesis Tests 151
8.1 Review of Terminology, 151
8.2 A-B Tests: The Two Sample Comparison, 154
8.3 Comparing Two Means, 156
8.4 Comparing Two Proportions, 157
8.5 Formula-Based Alternative--t-Test for Means, 159
8.6 The Null and Alternative Hypotheses, 160
8.7 Paired Comparisons, 163
Appendix A: Confidence Intervals Versus Hypothesis Tests, 167
Confidence Interval, 168
Relationship Between the Hypothesis Test and the Confidence Interval, 169
Comment, 170
Appendix B: Formula-Based Variations of Two-Sample Tests, 170
Z-Test With Known Population Variance, 170
Pooled Versus Separate Variances, 171
Formula-Based Alternative: Z-Test for Proportions, 172
8.8 Exercises, 172
9 Hypothesis Testing--2 178
9.1 A Single Proportion, 178
9.2 A Single Mean, 180
9.3 More Than Two Categories or Samples, 181
9.4 Continuous Data, 187
9.5 Goodness-of-Fit, 187
Appendix: Normal Approximation; Hypothesis Test of a Single Proportion, 190
Confidence Interval for a Mean, 190
9.6 Exercises, 191
10 Correlation 193
10.1 Example: Delta Wire, 194
10.2 Example: Cotton Dust and Lung Disease, 195
10.3 The Vector Product and Sum Test, 196
10.4 Correlation Coefficient, 199
10.5 Other Forms of Association, 204
10.6 Correlation is not Causation, 205
10.7 Exercises, 206
11 Regression 209
11.1 Finding the Regression Line by Eye, 210
11.2 Finding the Regression Line by Minimizing Residuals, 212
11.3 Linear Relationships, 213
11.4 Inference for Regression, 217
11.5 Exercises, 221
12 Analysis of Variance--ANOVA 224
12.1 Comparing More Than Two Groups: ANOVA, 225
12.2 The Problem of Multiple Inference, 228
12.3 A Single Test, 229
12.4 Components of Variance, 230
12.5 Two-Way ANOVA, 240
12.6 Factorial Design, 246
12.7 Exercises, 248
13 Multiple Regression 251
13.1 Regression as Explanation, 252
13.2 Simple Linear Regression--Explore the Data First, 253
13.3 More Independent Variables, 257
13.4 Model Assessment and Inference, 261
13.5 Assumptions, 267
13.6 Interaction, Again, 270
13.7 Regression for Prediction, 272
13.8 Exercises, 277
Index 283
"The book is an excellent primary textbook for courses in preliminary statistics as well as a supplement for courses in upper-level statistics and related fields, such as biostatistics and econometrics. The book is also a general reference for readers interested in revisiting the value of statistics." (Zentralblatt MATH, 1 April 2015)
Erscheint lt. Verlag | 3.12.2014 |
---|---|
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Statistik |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Technik | |
Schlagworte | Angewandte Wahrscheinlichkeitsrechnung u. Statistik • Applied Probability & Statistics • Computational & Graphical Statistics • Rechnergestützte u. graphische Statistik • Rechnergestützte u. graphische Statistik • Statistics • Statistics - Text & Reference • Statistik • Statistik / Lehr- u. Nachschlagewerke |
ISBN-10 | 1-118-88166-4 / 1118881664 |
ISBN-13 | 978-1-118-88166-8 / 9781118881668 |
Haben Sie eine Frage zum Produkt? |
Größe: 9,4 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich