Gesammelte Mathematische Abhandlungen I
Springer Berlin (Verlag)
978-3-662-45462-6 (ISBN)
Des Ersten Bandes.- Zur Liniengeometrie. Zur Dissertation.- I. Über die Transformation der allgemeinen Gleichung des zweiten Grades zwischen Linienkoordinaten auf eine kanonische Form (1868).- Zu den folgenden liniengeometrischen Arbeiten.- II. Zur Theorie der Linienkomplexe des ersten und zweiten Grades (1869-70).- III. Die allgemeine lineare Transformation der Linienkoordinaten (1869-70).- IV. Über Abbildung der Komplexflächen vierter Ordnung und vierter Klasse (1869-70).- V. Eine Abbildung des Linienkomplexes zweiten Grades auf den Punktraum (1869).- VI. (Zusammen mit S. Lie.) Über die Haupttangentenkurven der Kummersehen Fläche vierten Grades mit 16 Knotenpunkten (1870).- VII. Über einen Satz aus der Theorie der Linienkomplexe, welcher dem Dupinschen Theorem entspricht (1871).- VIII. Über Liniengeometrie und metrische Geometrie (1871-72).- IX. Über gewisse in der Liniengeometrie auftretende Differentialgleichungen (1871-72).- X. Über einen liniengeometrischen Satz (1872).- XI. Überdie Plückersche Komplexfläche (1873-74).- XII. Über Konfigurationen, welch° der Kummerschen Fläche zugleich eingeschrieben und umgeschrieben sind (1885).- XIII. Zur geometrischen Deutung des Abe l sehen Theorems der hyperelliptischen Integrale (1886).- XIV. Notiz, betreffend den Zusammenhang der Liniengeometrie mit der Mechanik starrer Körper (1871).- Zur Grundlegung der Geometrie. Vorbemerkungen zu den Arbeiten über die Grundlagen der Geometrie.- XV. Über die sogenannte Nicht-Euklidische Geometrie (Vorl. Mitt.) (1871).- XVI. Über die sogenannte Nicht-Euklidische Geometrie (erster Aufsatz) (1871).- XVII. Über einen Satz aus der Analysis Situs (1872).- XVIII. Über die sogenannte Nicht-Euklidische Geometrie (zweiter Aufsatz) (1872-73).- XIX. Nachtrag zu dem "zweiten Aufsatz über Nicht-Euklidische Geometrie" (1874).- XX. Über die geometrische Definition der Projektivität auf den Grundgebilden erster Stufe (1880).- XXI. Zur Nicht-Euklidischen Geometrie (1890).- XXII. Gutachten, betreffendden dritten Band der Theorie der Transformationsgruppen von S. Lie anläßlich der ersten Verteilung des Lobatschewsky-Preises (1897).- XXIII. Zur Interpretation der komplexen Elemente in der Geometrie (1872).- XXIV. Eine Übertragung des Pascalschen Satzes auf Raumgeometrie (1873).- Zum Erlanger Programm. Zur Entstehung der Abhandlungen XXV-XXXIII.- XXV. (Zusammen mit S. Lie.) Deux notes sur une certaine famille de courbes et de surfaces (1870).- XXVI. (Zusammen mit S. Lie.) Über diejenigen ebenen Kurven, welche durch ein geschlossenes System von einfach unendlich vielen, vertauschbaren linearen Transformationen in sich übergehen (1871).- XXVII. Vergleichende Betrachtungen über neuere geometrische Forschungen (Das Erlanger Programm.) (1872).- XXVIII. Autographierte Vorlesungshefte (Höhere Geometrie) (1894).- XXIX. Zur Schraubentheorie von Sir Robert Ball (1901-02).- XXX Über die geometrischen Grundlagen der Lorentzgruppe (1910).- XXXI Zu Hilberts erster Note über die Grundlagen der Physik (1917-18).- XXXII Über die Differentialgesetze für die Erhaltung von Impuls und Energie in der Einsteinschen Gravitationstheorie (1918).- XXXIII. Über die Integralform der Erhaltungssätze und die Theorie der räumlich geschlossenen Welt (1918).
Erscheint lt. Verlag | 29.12.2014 |
---|---|
Reihe/Serie | Springer Collected Works in Mathematics |
Zusatzinfo | XVI, 312 S. |
Verlagsort | Berlin |
Sprache | deutsch |
Maße | 155 x 235 mm |
Gewicht | 927 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Allgemeines / Lexika |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Schlagworte | Analysis • Ebene • Erlang • Erlanger Programm • Geometrie • Gleichung • Gravitationstheorie • Koordinaten • Kummersche Fläche • Lehrsatz • Linienkomplexe • Nicht-Euklidische Geometrie • Physik • Recht • Schraubentheorie • System • Transformationsgruppe • Weg • Weiterbildung • Wurzel |
ISBN-10 | 3-662-45462-9 / 3662454629 |
ISBN-13 | 978-3-662-45462-6 / 9783662454626 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich