Fourier Transforms (eBook)
784 Seiten
Wiley (Verlag)
978-1-118-90179-3 (ISBN)
Eric W. Hansen, PhD, received his MS and PhD in Electrical Engineering from Stanford University. He is a member of IEEE, OSA, and the ASEE. Dr Hansen has been on the Dartmouth faculty since 1979, and received the Excellence in Teaching Award from the Thayer School of Engineering.
PREFACE xi
CHAPTER 1 REVIEW OF PREREQUISITE MATHEMATICS 1
1.1 Common Notation 1
1.2 Vectors in Space 3
1.3 Complex Numbers 8
1.4 Matrix Algebra 11
1.5 Mappings and Functions 15
1.6 Sinusoidal Functions 20
1.7 Complex Exponentials 22
1.8 Geometric Series 24
1.9 Results from Calculus 25
1.10 Top 10 Ways to Avoid Errors in Calculations 33
Problems 33
CHAPTER 2 VECTOR SPACES 36
2.1 Signals and Vector Spaces 37
2.2 Finite-dimensional Vector Spaces 39
2.3 Infinite-dimensional Vector Spaces 64
2.4 Operators 86
2.5 Creating Orthonormal Bases-the Gram-Schmidt Process 94
2.6 Summary 99
Problems 101
CHAPTER 3 THE DISCRETE FOURIER TRANSFORM 109
3.1 Sinusoidal Sequences 109
3.2 The Discrete Fourier Transform 114
3.3 Interpreting the DFT 117
3.4 DFT Properties and Theorems 126
3.5 Fast Fourier Transform 152
3.6 Discrete Cosine Transform 156
3.7 Summary 164
Problems 165
CHAPTER 4 THE FOURIER SERIES 177
4.1 Sinusoids and Physical Systems 178
4.2 Definitions and Interpretation 178
4.3 Convergence of the Fourier Series 187
4.4 Fourier Series Properties and Theorems 199
4.5 The Heat Equation 215
4.6 The Vibrating String 223
4.7 Antenna Arrays 227
4.8 Computing the Fourier Series 233
4.9 Discrete Time Fourier Transform 238
4.10 Summary 256
Problems 259
CHAPTER 5 THE FOURIER TRANSFORM 273
5.1 From Fourier Series to Fourier Transform 274
5.2 Basic Properties and Some Examples 276
5.3 Fourier Transform Theorems 281
5.4 Interpreting the Fourier Transform 299
5.5 Convolution 300
5.6 More about the Fourier Transform 310
5.7 Time-bandwidth Relationships 318
5.8 Computing the Fourier Transform 322
5.9 Time-frequency Transforms 336
5.10 Summary 349
Problems 351
CHAPTER 6 GENERALIZED FUNCTIONS 367
6.1 Impulsive Signals and Spectra 367
6.2 The Delta Function in a Nutshell 371
6.3 Generalized Functions 382
6.4 Generalized Fourier Transform 404
6.5 Sampling Theory and Fourier Series 414
6.6 Unifying the Fourier Family 429
6.7 Summary 433
Problems 436
CHAPTER 7 COMPLEX FUNCTION THEORY 454
7.1 Complex Functions and Their Visualization 455
7.2 Differentiation 460
7.3 Analytic Functions 466
7.4 exp z and Functions Derived from It 470
7.5 Log z and Functions Derived from It 472
7.6 Summary 489
Problems 490
CHAPTER 8 COMPLEX INTEGRATION 494
8.1 Line Integrals in the Plane 494
8.2 The Basic Complex Integral: integral Gamma zndz 497
8.3 Cauchy's Integral Theorem 502
8.4 Cauchy's Integral Formula 512
8.5 Laurent Series and Residues 520
8.6 Using Contour Integration to Calculate Integrals of Real Functions 531
8.7 Complex Integration and the Fourier Transform 543
8.8 Summary 556
Problems 557
CHAPTER 9 LAPLACE, Z, AND HILBERT TRANSFORMS 563
9.1 The Laplace Transform 563
9.2 The Z Transform 607
9.3 The Hilbert Transform 629
9.4 Summary 652
Problems 654
CHAPTER 10 FOURIER TRANSFORMS IN TWO AND THREE DIMENSIONS 669
10.1 Two-Dimensional Fourier Transform 669
10.2 Fourier Transforms in Polar Coordinates 684
10.3 Wave Propagation 696
10.4 Image Formation and Processing 709
10.5 Fourier Transform of a Lattice 722
10.6 Discrete Multidimensional Fourier Transforms 731
10.7 Summary 736
Problems 737
BIBLIOGRAPHY 743
INDEX 747
"It is convenient that every chapter ends up with a summary of the results considered and a bunch of exercises. I hope the author's experience and expertise are what had inspired him to write this book of the present form, size and choice of matter. I also hope that it will find additional readers beyond the author's students." (Zentralblatt MATH, 1 May 2015)
Erscheint lt. Verlag | 1.10.2014 |
---|---|
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Technik ► Elektrotechnik / Energietechnik | |
Schlagworte | Applied Mathematics in Engineering • Applied Mathmatics in Engineering • Electrical & Electronics Engineering • Elektrotechnik u. Elektronik • Fouriertransformation • Mathematics • Mathematik • Mathematik in den Ingenieurwissenschaften • Numerical Methods & Algorithms • Numerische Methoden u. Algorithmen |
ISBN-10 | 1-118-90179-7 / 1118901797 |
ISBN-13 | 978-1-118-90179-3 / 9781118901793 |
Haben Sie eine Frage zum Produkt? |
Größe: 20,2 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich