Weakly Wandering Sequences in Ergodic Theory (eBook)
XIV, 153 Seiten
Springer Tokyo (Verlag)
978-4-431-55108-9 (ISBN)
The appearance of weakly wandering (ww) sets and sequences for ergodic transformations over half a century ago was an unexpected and surprising event. In time it was shown that ww and related sequences reflected significant and deep properties of ergodic transformations that preserve an infinite measure.
This monograph studies in a systematic way the role of ww and related sequences in the classification of ergodic transformations preserving an infinite measure. Connections of these sequences to additive number theory and tilings of the integers are also discussed. The material presented is self-contained and accessible to graduate students. A basic knowledge of measure theory is adequate for the reader.
Arshag Hajian Professor of Mathematics at Northeastern University, Boston, Massachusetts, U.S.A. Stanley Eigen Professor of Mathematics at Northeastern University, Boston, Massachusetts, U. S. A. Raj. Prasad Professor of Mathematics at University of Massachusetts at Lowell, Lowell, Massachusetts, U.S.A. Yuji Ito Professor Emeritus of Keio University, Yokohama, Japan.
The appearance of weakly wandering (ww) sets and sequences for ergodic transformations over half a century ago was an unexpected and surprising event. In time it was shown that ww and related sequences reflected significant and deep properties of ergodic transformations that preserve an infinite measure.This monograph studies in a systematic way the role of ww and related sequences in the classification of ergodic transformations preserving an infinite measure. Connections of these sequences to additive number theory and tilings of the integers are also discussed. The material presented is self-contained and accessible to graduate students. A basic knowledge of measure theory is adequate for the reader.
Arshag Hajian Professor of Mathematics at Northeastern University, Boston, Massachusetts, U.S.A. Stanley Eigen Professor of Mathematics at Northeastern University, Boston, Massachusetts, U. S. A. Raj. Prasad Professor of Mathematics at University of Massachusetts at Lowell, Lowell, Massachusetts, U.S.A. Yuji Ito Professor Emeritus of Keio University, Yokohama, Japan.
1. Existence of a finite invariant measure 2. Transformations with no Finite Invariant Measure 3. Infinite Ergodic Transformations 4. Three Basic Examples 5. Properties of Various Sequences 6. Isomorphism Invariants 7. Integer Tilings
Erscheint lt. Verlag | 19.8.2014 |
---|---|
Reihe/Serie | Springer Monographs in Mathematics | Springer Monographs in Mathematics |
Zusatzinfo | XIV, 153 p. 15 illus. |
Verlagsort | Tokyo |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie | |
Technik | |
Schlagworte | Direct sum decompositions of N and Z • Infinite ergodic transformations • Invariant measures for ergodic transformations • Recurrent and dissipative sequences • Weakly wandering and exhaustive weakly wandering sequences |
ISBN-10 | 4-431-55108-5 / 4431551085 |
ISBN-13 | 978-4-431-55108-9 / 9784431551089 |
Haben Sie eine Frage zum Produkt? |
Größe: 2,2 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich