Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Bayesian and grAphical Models for Biomedical Imaging -

Bayesian and grAphical Models for Biomedical Imaging

First International Workshop, BAMBI 2014, Cambridge, MA, USA, September 18, 2014, Revised Selected Papers
Buch | Softcover
X, 131 Seiten
2014 | 2014
Springer International Publishing (Verlag)
978-3-319-12288-5 (ISBN)
CHF 59,90 inkl. MwSt
This book constitutes the refereed proceedings of the First International Workshop on Bayesian and grAphical Models for Biomedical Imaging, BAMBI 2014, held in Cambridge, MA, USA, in September 2014 as a satellite event of the 17th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2014.
The 11 revised full papers presented were carefully reviewed and selected from numerous submissions with a key aspect on probabilistic modeling applied to medical image analysis. The objectives of this workshop compared to other workshops, e.g. machine learning in medical imaging, have a stronger mathematical focus on the foundations of probabilistic modeling and inference. The papers highlight the potential of using Bayesian or random field graphical models for advancing scientific research in biomedical image analysis or for the advancement of modeling and analysis of medical imaging data.

N3 Bias Field Correction Explained as a Bayesian Modeling Method.- A Bayesian Approach to Distinguishing Interdigitated Muscles in the Tongue from Limited Diffusion Weighted Imaging.- Optimal Joint Segmentation and Tracking of Escherichia Coli in the Mother Machine.- Physiologically Informed Bayesian Analysis of ASL fMRI Data.- Bone Reposition Planning for Corrective Surgery Using Statistical Shape Model: Assessment of Differential Geometrical Features.- An Inference Language for Imaging.- An MRF-Based Discrete Optimization Framework for Combined DCE-MRI Motion Correction and Pharmacokinetic Parameter Estimation.- Learning Imaging Biomarker Trajectories from Noisy Alzheimer's Disease Data Using a Bayesian Multilevel Model.- Four Neuroimaging Questions that P-Values Cannot Answer (and Bayesian Analysis Can).- Spherical Topic Models for Imaging Phenotype Discovery in Genetic Studies.- A Generative Model for Automatic Detection of Resolving Multiple Sclerosis Lesions.

Erscheint lt. Verlag 2.10.2014
Reihe/Serie Lecture Notes in Computer Science
Theoretical Computer Science and General Issues
Zusatzinfo X, 131 p. 54 illus.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 231 g
Themenwelt Informatik Theorie / Studium Algorithmen
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte Algorithm analysis and problem complexity • Bayesian modeling • Biomedical Images • classification • computer vision • Functional modeling • graphical modeling • Image Analysis • Image Segmentation • inference algorithms • machine learning • multi-modal modeling • neuro imaging • Probabilistic Models • reconstruction • registration • Segmentation • Structural modeling
ISBN-10 3-319-12288-6 / 3319122886
ISBN-13 978-3-319-12288-5 / 9783319122885
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
IT zum Anfassen für alle von 9 bis 99 – vom Navi bis Social Media

von Jens Gallenbacher

Buch | Softcover (2021)
Springer (Verlag)
CHF 41,95
Interlingua zur Gewährleistung semantischer Interoperabilität in der …

von Josef Ingenerf; Cora Drenkhahn

Buch | Softcover (2023)
Springer Fachmedien (Verlag)
CHF 46,15