Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Handbook of Combinatorial Optimization -  Ding-Zhu Du, Panos M. Pardalos

Handbook of Combinatorial Optimization

Buch | Softcover
2406 Seiten
2011
Springer-Verlag New York Inc.
978-1-4613-7987-4 (ISBN)
CHF 449,35 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
Furthermore, combinatorial optimization problems occur in many diverse areas such as linear and integer programming, graph theory, artificial intelligence, and number theory. Many polynomial-time solvable combinatorial optimization problems are special cases of linear programming (e.g.
Combinatorial (or discrete) optimization is one of the most active fields in the interface of operations research, computer science, and applied math­ ematics. Combinatorial optimization problems arise in various applications, including communications network design, VLSI design, machine vision, air­ line crew scheduling, corporate planning, computer-aided design and man­ ufacturing, database query design, cellular telephone frequency assignment, constraint directed reasoning, and computational biology. Furthermore, combinatorial optimization problems occur in many diverse areas such as linear and integer programming, graph theory, artificial intelligence, and number theory. All these problems, when formulated mathematically as the minimization or maximization of a certain function defined on some domain, have a commonality of discreteness. Historically, combinatorial optimization starts with linear programming. Linear programming has an entire range of important applications including production planning and distribution, personnel assignment, finance, alloca­ tion of economic resources, circuit simulation, and control systems. Leonid Kantorovich and Tjalling Koopmans received the Nobel Prize (1975) for their work on the optimal allocation of resources. Two important discover­ ies, the ellipsoid method (1979) and interior point approaches (1984) both provide polynomial time algorithms for linear programming. These algo­ rithms have had a profound effect in combinatorial optimization. Many polynomial-time solvable combinatorial optimization problems are special cases of linear programming (e.g. matching and maximum flow). In addi­ tion, linear programming relaxations are often the basis for many approxi­ mation algorithms for solving NP-hard problems (e.g. dualheuristics).

Mixed-Integer Nonlinear Optimization in Process Synthesis.- Approximate Algorithms and Heuristics for MAX-SAT.- Connections between Nonlinear Programming and Discrete Optimization.- Interior Point Methods for Combinatorial Optimization.- Knapsack Problems.- Fractional Combinatorial Optimization.- Reformulation-Linearization Techniques for Discrete Optimization Problems.- Gröbner Bases in Integer Programming.- Applications of Set Covering, Set Packing and Set Partitioning Models: A Survey.- Efficient Algorithms for Geometric Shortest Path Query Problems.- Computing Distances between Evolutionary Trees.- Combinatorial Optimization and Coalition Games.- Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work.- Resource Allocation Problems.- Combinatoral Optimization in Clustering.- The Graph Coloring Problem: A Bibliographic Survey.- Steiner Minimal Trees in E3: Theory, Algorithms, and Applications.- Dynamical System Approaches to Combinatorial Optimization.- On-line Dominating Set Problems for Graphs.- Optimization Problems in Optical Networks.- Shortest Networks on Surfaces.- Minimum Weight Triangulations.- Optimization Applications in the Airline Industry.- Semidefinite Relaxations, Multivariate Normal Distributions, and Order Statistics.- A Review of Machine Scheduling: Complexity, Algorithms and Approximability.- Routing and Topology Embedding in Lightwave Networks.- The Quadratic Assignment Problem.- Algorithmic Aspects of Domination in Graphs.- Selected Algorithmic Techniques for Parallel Optimization.- Multispace Search for Combinatorial Optimization.- The Equitable Coloring of Graphs.- Randomized Parallel Algorithms for Combinatorial Optimization.- Tabu Search.- Author Index.- Author Index.- Author Index.- Author Index of Volumes 1–3.-Subject Index of Volumes 1–3.

Zusatzinfo 36 Illustrations, black and white; XXIV, 2406 p. 36 illus. In 3 volumes, not available separately.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Graphentheorie
ISBN-10 1-4613-7987-3 / 1461379873
ISBN-13 978-1-4613-7987-4 / 9781461379874
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Grundlagen – Anwendungen – Perspektiven

von Matthias Homeister

Buch | Softcover (2022)
Springer Vieweg (Verlag)
CHF 48,95
Eine Einführung in die Systemtheorie

von Margot Berghaus

Buch | Softcover (2022)
UTB (Verlag)
CHF 34,95
was jeder über Informatik wissen sollte

von Timm Eichstädt; Stefan Spieker

Buch | Softcover (2024)
Springer Vieweg (Verlag)
CHF 53,15