Inside Interesting Integrals
Springer-Verlag New York Inc.
978-1-4939-1276-6 (ISBN)
- Titel erscheint in neuer Auflage
- Artikel merken
What makes doing the specific integrals in this book of value aren’t the specific answers we’ll obtain, but rather the methods we’ll use in obtaining those answers; methods you can use for evaluating the integrals you will encounter in the future.
This book is written in a light-hearted manner for students who have completed the first year of college or high school AP calculus and have just a bit of exposure to the concept of a differential equation. Every result is fully derived. If you are fascinated by definite integrals, then this is a book for you.
Paul Nahin was born in California, and did all of his schooling there (Brea-Olinda High 1958, Stanford BS 1962, Caltech MS 1963 and - as a Howard Hughes Staff Doctoral Fellow - UC/Irvine PhD 1972, with all degrees in electrical engineering). He has taught at Harvey Mudd College, the Naval Postgraduate School and the Universities of New Hampshire (where he is now emeritus professor of electrical engineering) and Virginia. Prof. Nahin has published a couple of dozen short science fiction stories in ANALOG, OMNI and TWILIGHT ZONE magazines, and has written 14 books on mathematics and physics. He has given invited talks on mathematics at Bowdoin College, the Claremont Graduate School, the University of Tennessee and Caltech, has appeared on National Public Radio's "Science Friday" show (discussing time travel) as well as on New Hampshire Public Radio's "The Front Porch" show (discussing imaginary numbers) and advised Boston's WGBH Public Television's "Nova" program on the script for their time travel episode. He gave the invited Sampson Lectures for 2011 in Mathematics at Bates College (Lewiston, Maine).
Preface.- 1. Introduction.- 1.1 The Riemann Integral.- 1.2 An Example of Riemann Integration.- 1.3 The Lebesgue Integral.- 1.4 ‘Interesting’ and ‘Inside’.- 1.5 An Example of a Trick.- 1.6 Singularities.- 1.7 Dalzell’s Integral.- 1.8 Where Integrals Come From.- 1.9 Last Words.- 1.10 Challenge Problems.- 2. ‘Easy’ Integrals.- 2.1 Six ‘Easy’ Warm-ups.- 2.2 A New Trick.- 2.3 Two Old Tricks, Plus a New One.- 2.4 Another Old Trick: Euler’s Log-Sine Integral.- 2.5 Challenge Problems.- 3. Feynman’s Favorite Trick.- 3.1 Leibniz’s Formula.- 3.2 Dirichlet’s Amazing Integral.- 3.3 Frullani’s Integral.- 3.4 The Flip-Side of Feynman’s Trick.- 3.5 Combining Two Tricks.- 3.6 Uhler’s Integral and Symbolic Integration.- 3.7 The Probability Integral Revisited.- 3.8 Dini’s Integral.- 3.9 Feynman’s Favorite Trick Solves a Physics Equation .- 3.10 Challenge Problems.- 4. Gamma and Beta Function Integrals.- 4.1 Euler’s Gamma Function.- 4.2 Wallis’ Integral and the Beta Function.- 4.3 Double Integration Reversal.- 4.4 The Gamma Function Meets Physics.- 4.5 Challenge Problems.- 5. Using Power Series to Evaluate Integrals.- 5.1 Catalan’s Constant.- 5.2 Power Series for the Log Function.- 5.3 Zeta Function Integrals.- 5.4 Euler’s Constant and Related Integrals.- 5.5 Challenge Problems.- 6. Seven Not-So-Easy Integrals.- 6.1 Bernoulli’s Integral .- 6.2 Ahmed’s Integral.- 6.3 Coxeter’s Integral.- 6.4 The Hardy-Schuster Optical Integral.- 6.5 The Watson/van Peype Triple Integrals.- 6.6 Elliptic Integrals in a Physical Problem.- 6.7 Challenge Problems.- 7. Using √(-1) to Evaluate Integrals.- 7.1 Euler’s Formula.- 7.2 The Fresnel Integrals.- 7.3 (3) and More Log-Sine Integrals .- 7.4 (2), At Last!.- 7.5 The Probability Integral Again.- 7.6 Beyond Dirichlet’s Integral.- 7.7 Dirichlet Meets the Gamma Function.- 7.8 Fourier Transforms and Energy Integrals.- 7.9 ‘Weird’ Integrals from Radio Engineering.- 7.10 Causality and Hilbert Transform Integrals.- 7.11 Challenge Problems.- 8. Contour Integration.- 8.1 Prelude.- 8.2 Line Integrals.- 8.3 Functions of a Complex Variable.- 8.4 The Cauchy-Riemann Equations and Analytic Functions.- 8.5 Green’s Integral Theorem.- 8.6 Cauchy’s First Integral Theorem.- 8.7 Cauchy’s Second Integral Theorem.- 8.8 Singularities and the Residue Theorem.- 8.9 Integrals with Multi-valued Integrands.- 8.10 Challenge Problems.- 9. Epilogue.- 9.1 Riemann, Prime Numbers, and the Zeta Function.- 9.2 Deriving the Functional Equation for (s).- 9.3 Challenge Questions.- Solutions to the Challenge Problems.
Reihe/Serie | Undergraduate Lecture Notes in Physics |
---|---|
Zusatzinfo | 1 Illustrations, color; 33 Illustrations, black and white; XXIII, 412 p. 34 illus., 1 illus. in color. |
Verlagsort | New York |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 7348 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Naturwissenschaften ► Physik / Astronomie ► Allgemeines / Lexika | |
Schlagworte | Differentiation Under the Integral • Dirichlet Integral • Euler Log-sine Integral • Feynman Integral • Integration Methods • Integration Techniques • Leibnitz Formula • Lesbesque Integral • Riemann integral • Symbolic integration |
ISBN-10 | 1-4939-1276-3 / 1493912763 |
ISBN-13 | 978-1-4939-1276-6 / 9781493912766 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich