Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Beginning Partial Differential Equations (eBook)

(Autor)

eBook Download: EPUB
2014 | 3. Auflage
456 Seiten
John Wiley & Sons (Verlag)
978-1-118-62998-7 (ISBN)

Lese- und Medienproben

Beginning Partial Differential Equations - Peter V. O'Neil
Systemvoraussetzungen
95,99 inkl. MwSt
(CHF 93,75)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
A broad introduction to PDEs with an emphasis on specialized
topics and applications occurring in a variety of fields

Featuring a thoroughly revised presentation of topics,
Beginning Partial Differential Equations, Third Edition
provides a challenging, yet accessible, combination of techniques,
applications, and introductory theory on the subjectof partial
differential equations. The new edition offers nonstandard
coverageon material including Burger's equation, the
telegraph equation, damped wavemotion, and the use of
characteristics to solve nonhomogeneous problems.

The Third Edition is organized around four themes:
methods of solution for initial-boundary value problems;
applications of partial differential equations; existence and
properties of solutions; and the use of software to experiment with
graphics and carry out computations. With a primary focus on wave
and diffusion processes, Beginning Partial Differential
Equations, Third Edition also includes:

* Proofs of theorems incorporated within the topical
presentation, such as the existence of a solution for the Dirichlet
problem

* The incorporation of Maple(TM) to perform computations and
experiments

* Unusual applications, such as Poe's pendulum

* Advanced topical coverage of special functions, such as Bessel,
Legendre polynomials, and spherical harmonics

* Fourier and Laplace transform techniques to solve important
problems

Beginning of Partial Differential Equations, Third
Edition is an ideal textbook for upper-undergraduate and
first-year graduate-level courses in analysis and applied
mathematics, science, and engineering.

PETER V. O'NEIL, PHD, is Professor Emeritus in the Department of Mathematics at the University of Alabama at Birmingham. He has over forty years of experience in teaching and writing and is the recipient of the Lester R. Ford Award from the Mathematical Association of America. Dr. O'Neil is also a member of the American Mathematical Society, the Mathematical Association of America, the Society for Industrial and Applied Mathematics, and the American Association for the Advancement of Science.

1 First Ideas 1

1.1 Two Partial Differential Equations 1

1.2 Fourier Series 10

1.3 Two Eigenvalue Problems 28

1.4 A Proof of the Fourier Convergence Theorem 30

2. Solutions of the Heat Equation 39

2.1 Solutions on an Interval (0, L) 39

2.2 A Nonhomogeneous Problem 64

2.3 The Heat Equation in Two space Variables 71

2.4 The Weak Maximum Principle 75

3. Solutions of the Wave Equation 81

3.1 Solutions on Bounded Intervals 81

3.2 The Cauchy Problem 109

3.3 The Wave Equation in Higher Dimensions 137

4. Dirichlet and Neumann Problems 147

4.1 Laplace's Equation and Harmonic Functions 147

4.2 The Dirichlet Problem for a Rectangle 153

4.3 The Dirichlet Problem for a Disk 158

4.4 Properties of Harmonic Functions 165

4.5 The Neumann Problem 187

4.6 Poisson's Equation 197

4.7 Existence Theorem for a Dirichlet Problem 200

5. Fourier Integral Methods of Solution 213

5.1 The Fourier Integral of a Function 213

5.2 The Heat Equation on a Real Line 220

5.3 The Debate over the Age of the Earth 230

5.4 Burger's Equation 233

5.5 The Cauchy Problem for a Wave Equation 239

5.6 Laplace's Equation on Unbounded Domains 244

6. Solutions Using Eigenfunction Expansions 253

6.1 A Theory of Eigenfunction Expansions 253

6.2 Bessel Functions 266

6.3 Applications of Bessel Functions 279

6.4 Legendre Polynomials and Applications 288

7. Integral Transform Methods of Solution 307

7.1 The Fourier Transform 307

7.2 Heat and Wave Equations 318

7.3 The Telegraph Equation 332

7.4 The Laplace Transform 334

8 First-Order Equations 341

8.1 Linear First-Order Equations 342

8.2 The Significance of Characteristics 349

8.3 The Quasi-Linear Equation 354

9 End Materials 361

9.1 Notation 361

9.2 Use of MAPLE 363

9.3 Answers to Selected Problems 370

Index 434

"I enjoyed perusing O'Neil's book. A beginner in the field of PDEs will learn quite a number of juicy facts concerning the flow of heat and the transmission of waves. While a next step will undoubtedly involve more rigor in the use of analytic tools, this first course will catch the attention of those with a curiosity for studying physical processes using differential equations." (Mathematical Association of America, 15 February 2015)

"This book is one of the textbooks that provide an introduction to basic methods and applications of partial differential equations for students of mathematics, physics and engineering." (Zentralblatt MATH, 1 October 2014)

Erscheint lt. Verlag 7.5.2014
Reihe/Serie Wiley Series in Pure and Applied Mathematics
Wiley Series in Pure and Applied Mathematics
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Analysis
Technik
Schlagworte Applied Mathematics in Engineering • Applied Mathematics in Science • Applied Mathmatics in Engineering • Differential Equations • Differentialgleichung • Differentialgleichungen • Mathematics • Mathematik • Mathematik in den Ingenieurwissenschaften • Mathematik in den Naturwissenschaften • Partielle Differentialgleichung
ISBN-10 1-118-62998-1 / 1118629981
ISBN-13 978-1-118-62998-7 / 9781118629987
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 10,3 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich