Classical Geometry (eBook)
496 Seiten
John Wiley & Sons (Verlag)
978-1-118-67914-2 (ISBN)
Accessible and reader-friendly, Classical Geometry: Euclidean, Transformational, Inversive, and Projective introduces readers to a valuable discipline that is crucial to understanding bothspatial relationships and logical reasoning. Focusing on the development of geometric intuitionwhile avoiding the axiomatic method, a problem solving approach is encouraged throughout.
The book is strategically divided into three sections: Part One focuses on Euclidean geometry, which provides the foundation for the rest of the material covered throughout; Part Two discusses Euclidean transformations of the plane, as well as groups and their use in studying transformations; and Part Three covers inversive and projective geometry as natural extensions of Euclidean geometry. In addition to featuring real-world applications throughout, Classical Geometry: Euclidean, Transformational, Inversive, and Projective includes:
* Multiple entertaining and elegant geometry problems at the end of each section for every level of study
* Fully worked examples with exercises to facilitate comprehension and retention
* Unique topical coverage, such as the theorems of Ceva and Menalaus and their applications
* An approach that prepares readers for the art of logical reasoning, modeling, and proofs
The book is an excellent textbook for courses in introductory geometry, elementary geometry, modern geometry, and history of mathematics at the undergraduate level for mathematics majors, as well as for engineering and secondary education majors. The book is also ideal for anyone who would like to learn the various applications of elementary geometry.
I. E. LEONARD, PHD, is Lecturer in the Department of Mathematical and Statistical Sciences at the University of Alberta, Canada. The author of over fifteen journal articles, his areas of research interest include real analysis and discrete mathematics. J. E. LEWIS, PHD, is Professor Emeritus in the Department of Mathematical Sciences at the University of Alberta, Canada. He was the recipient of the Faculty of Science Award for Excellence in Teaching in 2004. A. C. F. LIU, PHD, is Professor in the Department of Mathematical and Statistical Sciences at the University of Alberta, Canada. He has authored over thirty journal articles. G. W. TOKARSKY, MSC, is Faculty Lecturer in the Department of Mathematical and Statistical Sciences at the University of Alberta, Canada. His areas of research interest include polygonal billiards and symbolic logic.
Preface v
Part I Euclidean Geometry
1 Congruency 3
2 Concurrency 41
3 Similarity 59
4 Theorems of Ceva and Menelaus 95
5 Area 133
6 Miscellaneous Topics 159
Part II Transformational Geometry
7 The Euclidean Transformations or Isometries 207
8 The Algebra of Isometries 235
9 The Product of Direct Isometries 255
10 Symmetry and Groups 271
11 Homotheties 289
12 Tessellations 313
Part III Inversive And Projective Geometries
13 Introduction to Inversive Geometry 339
14 Reciprocation and the Extended Plane 375
15 Cross Ratios 411
16 Introduction to Projective Geometry 435
Bibliography 466
Index 471
"The book is an extremely valuable compendium of
elementary constructions of Euclidean geometry. The text,
especially the proofs, is clearly structured and move forward in
simple steps, and thus are at the one hand very suitable for a
beginner in geometry and at the other hand exemplary for a teacher
of geometry." (Zentralblatt MATH, 1 October
2014)
Erscheint lt. Verlag | 30.4.2014 |
---|---|
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
Technik | |
Schlagworte | Applied Mathematics in Science • Bildungswesen • Education • Geometrie • Geometrie u. Topologie • Geometry & Topology • Lehrpläne / Mathematik • Lehrpläne / Mathematik • Mathematics • Mathematik • Mathematik in den Naturwissenschaften |
ISBN-10 | 1-118-67914-8 / 1118679148 |
ISBN-13 | 978-1-118-67914-2 / 9781118679142 |
Haben Sie eine Frage zum Produkt? |
Größe: 16,0 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich