Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Hysteresis in Magnetism -  Giorgio Bertotti

Hysteresis in Magnetism (eBook)

For Physicists, Materials Scientists, and Engineers
eBook Download: PDF | EPUB
1998 | 1. Auflage
558 Seiten
Elsevier Science (Verlag)
978-0-08-053437-4 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
175,00 inkl. MwSt
(CHF 169,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book provides a comprehensive treatment of the physics of hysteresis in magnetism and of the mathematical tools used to describe it. Hysteresis in Magnetism discusses from a unified viewpoint the relationsof hysteresis to Maxwells equations, equilibrium and non-equilibrium thermodynamics, non-linear system dynamics, micromagnetics, and domain theory. These aspects are then applied to the interpretation of magnetization reversal mechanisms: coherent rotation and switching in magnetic particles, stochastic domain wall motion and the Barkhausen effect, coercivity mechanisms and magnetic viscosity, rate-dependent hysteresis and eddy-current losses. The book emphasizes the connection between basic physical ideas and phenomenological models of interest to applications, and, in particular, to the conceptual path going from Maxwells equations and thermodynamics to micromagnetics and to Preisach hysteresis modeling. - The reader will get insight into the importance and role of hysteresis in magnetism; In particular, he will learn: - which are the fingerprints of hysteresis in magnetism - which are the situations in which hysteresis may appear - how to describe mathematically these situations - how to apply these descriptions to magnetic materials - how to interpret and predict magnetic hysteresis phenomena observed experimentally

Giorgio Bertotti is a senior scientist at INRIM, Istituto Nazionale di Ricerca Metrologica (previously known as IEN Galileo Ferraris), in Torino, Italy, where he has been a researcher since 1979. His research interests are in the field of magnetism and magnetic materials, hysteresis modeling, thermodynamics, noise phenomena. He is author of more than 200 scientific articles and of the book 'Hysteresis in Magnetism'.
This book provides a comprehensive treatment of the physics of hysteresis in magnetism and of the mathematical tools used to describe it. Hysteresis in Magnetism discusses from a unified viewpoint the relationsof hysteresis to Maxwells equations, equilibrium and non-equilibrium thermodynamics, non-linear system dynamics, micromagnetics, and domain theory. These aspects are then applied to the interpretation of magnetization reversal mechanisms: coherent rotation and switching in magnetic particles, stochastic domain wall motion and the Barkhausen effect, coercivity mechanisms and magnetic viscosity, rate-dependent hysteresis and eddy-current losses. The book emphasizes the connection between basic physical ideas and phenomenological models of interest to applications, and, in particular, to the conceptual path going from Maxwells equations and thermodynamics to micromagnetics and to Preisach hysteresis modeling. - The reader will get insight into the importance and role of hysteresis in magnetism; In particular, he will learn:- which are the fingerprints of hysteresis in magnetism- which are the situations in which hysteresis may appear- how to describe mathematically these situations- how to apply these descriptions to magnetic materials- how to interpret and predict magnetic hysteresis phenomena observed experimentally

Front Cover 
1 
Hysteresis in Magnetism: For Physicists, Materials Scientists, and Engineers 4
Copyright Page 5
Table of Contents 6
Dedication 5
Foreword 12
Preface 14
PART I: 
19 
CHAPTER 1. 
21 
1.1 HYSTERESIS LOOPS 22
1.2 GENERAL CHARACTERIZATION OF HYSTERESIS 34
1.3 TIME-DEPENDENT PHENOMENA 41
1.4 BIBLIOGRAPHICAL NOTES 47
CHAPTER 2. 
49 
2.1 WHAT WE MEAN BY HYSTERESIS 50
2.2 RATE-INDEPENDENT HYSTERESIS 62
2.3 RATE-DEPENDENT HYSTERESIS 72
2.4 THERMAL RELAXATION 78
2.5 BIBLIOGRAPHICAL NOTES 87
PART II: Maxwell's Equations and 
89 
CHAPTER 3. Maxwell's Equations in Magnetic Media 91
3.1 MAGNETOSTATICS 92
3.2 MAGNETIZED MEDIA 99
3.3 ENERGY RELATIONS 109
3.4 BIBLIOGRAPHICAL NOTES 120
CHAPTER 4. Magnetic Work and 
121 
4.1 MAGNETIC WORK AND CONSTITUTIVE LAWS 121
4.2 THERMODYNAMIC RELATIONS 133
4.3 BIBLIOGRAPHICAL NOTES 142
PART III: 
145 
CHAPTER 5. 
147 
5.1 EXCHANGE 148
5.2 ANISOTROPY 162
5.3 ANISOTROPY MECHANISMS 174
5.4 BIBLIOGRAPHICAL NOTES 180
CHAPTER 6. 
181 
6.1 MAGNETIC FREE ENERGY 182
6.2 MICROMAGNETIC EQUATIONS 197
6.3 BIBLIOGRAPHICAL NOTES 204
CHAPTER 7. Magnetic Domains and 
207 
7.1 EXISTENCE OF DOMAINS 208
7.2 DOMAIN WALLS 214
7.3 DOMAIN STRUCTURES 222
7.4 BIBLIOGRAPHICAL NOTES 238
PART IV: 
241 
CHAPTER 8. 
243 
8.1 SINGLE PARTICLES 244
8.2 HYSTERESIS AND ENERGY DISSIPATION 254
8.3 PARTICLE ASSEMBLIES 265
8.4 BIBLIOGRAPHICAL NOTES 271
CHAPTER 9. 
273 
9.1 SINGLE DOMAIN WALLS 275
9.2 STOCHASTIC DOMAIN WALL DYNAMICS 284
9.3 THE BARKHAUSEN EFFECT 299
9.4 BIBLIOGRAPHICAL NOTES 312
CHAPTER 10. 
315 
10.1 MAGNETIZATION AT LOW AND LARGE FIELDS 316
10.2 HYSTERESIS LOOPS 335
10.3 MAGNETIC VISCOSITY 347
10.4 BIBLIOGRAPHICAL NOTES 361
CHAPTER 11. 
365 
11.1 REVERSAL MODES 366
11.2 DOMAIN WALL PINNING 375
11.3 STRUCTURAL LENGTHS 392
11.4 BIBLIOGRAPHICAL NOTES 405
CHAPTER 12. 
409 
12.1 LOSS SEPARATION 410
12.2 CLASSICAL LOSSES 417
12.3 EXCESS LOSSES 429
12.4 COMPLEX DOMAIN STRUCTURES 438
12.5 BIBLIOGRAPHICAL NOTES 447
PART V: 
450 
CHAPTER 13. 
451 
13.1 THE PREISACH APPROACH 453
13.2 ENERGETIC ASPECTS 466
13.3 HYSTERESIS PROPERTIES 476
13.4 STOCHASTIC MAGNETIZATION DYNAMICS 483
13.5 BIBLIOGRAPHICAL NOTES 493
CHAPTER 14. 
497 
14.1 RATE-INDEPENDENT HYSTERESIS 498
14.2 THERMAL RELAXATION 511
14.3 BIBLIOGRAPHICAL NOTES 523
APPENDIX A: 
527 
APPENDIX B: 
529 
APPENDIX C: 
533 
APPENDIX D: 
535 
APPENDIX E: 
537 
Bibliography 553
Index 561

Chapter 1

Magnetic Hysteresis


Hysteresis is at the heart of the behavior of magnetic materials. All applications, from electric motors to transformers and permanent magnets, from various types of electronic devices to magnetic recording, rely heavily on particular aspects of hysteresis. The variety of working conditions involved brings to light the fascinating richness of phenomena that may arise and drive the behavior of different materials. One soon realizes that naïve approaches, based on some empirical classification of material properties and on the use of limited phenomenological models developed on purpose, are largely inadequate for gaining convincing insight into the origin of the phenomena observed, or some significant power to predict them under various conditions. On the other hand, strong interest in hysteresis is not just the result of technological pressure. The comprehension of the physical mechanisms responsible for hysteresis and the development of adequate mathematical tools to describe it have attracted the attention of theoretical physicists and mathematicians for years. It is a beautiful example of a physical and mathematical problem of intriguing elegance and challenging complexity that is at the same time the source of pervading technological progress. Nobody can remain indifferent when considering the long but firm interdisciplinary chain that ties spin models of ferromagnetism to engineering applications of magnetic components.

The purpose of this chapter is to give an introductory overview of some general aspects of hysteresis, as they are observed in magnetic materials, and to make the reader acquainted with units, terms, and concepts frequently used in subsequent chapters. We illustrate some properties of hysteresis loops and their fundamental connection with magnetic domains. We discuss rate-independent hysteresis, rate-dependent effects (like eddy-current damping in metals), and thermal relaxation as the three fundamental classes of phenomena that may affect the behavior of a particular system. The presentation emphasizes qualitative aspects of general relevance, with little or no quantitative analysis. Frequent reference is made to subsequent chapters, where the same subjects will be discussed in greater detail.

1.1 HYSTERESIS LOOPS


If we were asked to mention the experimental fact giving the most distinctive fingerprint of ferromagnetism, then, depending on our scientific background, we would probably propose either the existence of the Curie point or the observation of hysteresis loops, examples of which are shown in Fig. 1.1. Loops like these are obtained by applying to the specimen a cyclic magnetic field H and by recording the ensuing change of the magnetization M or of the magnetic induction B along the field direction. M measures the average magnetic moment per unit volume in the material and characterizes its magnetic state. In this book, we shall employ the SI system of units,1 in which the magnetization, M, and the magnetic field, H, are measured in ampères per meter [Am−1], whereas the magnetic induction, B, and the magnetic polarization, I = μ0M, are measured in teslas [T]. μ0 = 4π 10− 7 H m− 1 is the permeability of the vacuum.

Figure 1.1 Hysteresis loops. Top: Grain-oriented 3 wt% Si-Fe alloy of the type used in transformer cores. Bottom: Sintered aligned Fe77Nd15B8 permanent magnet (after Ref. 1.1). Loop widths differ by a factor of the order of 105.

1.1.1 Hysteresis loops and magnetic domains


Hysteresis loops may take a variety of different forms and one would like to comprehend what are the basic physical mechanisms governing the observed phenomenology. We shall see that many interesting and highly nontrivial aspects contribute to the picture, and we shall have to go through several chapters of this book before attempting some convincing interpretation. Let us summarize here, as a simplified, introductory approach, the generally accepted view of the problem. A magnetic material can be imagined as an assembly of permanent magnetic moments mi, of quantum-mechanical origin. As an example, iron carries magnetic moments of 2.2μB per atom, where the Bohr magneton μB = hqe/4πme ≅ 9.27 10−24 A m2 (h is Planck’s constant, qe and me are the electron charge and mass) is the natural atomic unit of magnetic moments. The simplest situation one may imagine is the one realized in an ideal paramagnet. This is a system where the individual mi vectors do not interact with each other, but are independently shaken by thermal agitation. As a consequence, they take random orientations in space, which gives zero net magnetization in any macroscopic piece of material. However, a nonzero magnetization can be induced by an external field Ha. The potential energy of a single moment in the field is equal to –μ0mi·Ha. This energy term favors the alignment of the moments along the field direction. Conversely, the tendency of thermal agitation is just to destroy any order possibly present. An appreciable net magnetization component along the field is obtained when the field energy is at least comparable in order of magnitude to the thermal energy, which means that μ0μBHa ~ kBT. At room temperature, this would take place for fields Ha ~ kBT/μ0μB ~ 3 108 Am−1, which is about 106 times the order of magnitude of the fields involved in the upper loop of Fig. 1.1. It is evident that fields of the order of 10–102 Am −1 should be absolutely insufficient to overcome thermal agitation and produce any appreciable magnetization.

In 1907, Weiss suggested that ferromagnetic materials could exhibit a large spontaneous magnetization even at low fields because the elementary magnetic moments were by no means independent, as assumed in the previous picture of a paramagnet, but were strongly coupled by an internal field proportional to the magnetization itself, HWM, which he termed molecular field. The molecular field introduces a positive feedback mechanism, because the presence of a net magnetization produces a nonzero molecular field, which in turn acts on all moments trying to further align them. The result is that, below a critical temperature, the Curie temperature Tc, the magnetic moments spontaneously attain long-range order and the material acquires a substantial spontaneous magnetization Ms. The knowledge of the experimental value of Tc permits one to estimate the order of magnitude of HW, because at the Curie point one expects μ0μBHW ~ kBTc. In the case of iron, where Tc ~ 103 K, one finds HW ~ kBTc/μ0μB ~ 109 Am−1. Well below Tc, the moments are nearly perfectly aligned. In iron, at room temperature, this gives a spontaneous magnetization of the order of 2 T, which is the order of magnitude recorded in Fig. 1.1.

The molecular field hypothesis explains the main aspects of the temperature dependence of the spontaneous magnetization, but it raises other conceptual difficulties. If there exists an internal field as enormous as the estimate of 109 Am−1 seems to indicate, then one would expect to find ferromagnetic materials spontaneously magnetized to saturation under all circumstances. Thus how can a hysteresis loop exist at all? It would seem impossible that fields of the order of 10 Am−1 can reduce to zero the magnetization of a ferromagnet, if they are confronted with internal fields of the order of 109 Am−1. Weiss proposed to resolve this difficulty by postulating that a ferromagnetic material is subdivided into regions, called magnetic domains. In each domain, the degree of magnetic moment alignment is dictated by the molecular field, but the orientation of the spontaneous magnetization can vary from domain to domain. As a consequence, when the magnetization is averaged over volumes large enough to contain many domains, one obtains values mainly determined by the relative orientation and volume of domains. The result can be very different from the spontaneous magnetization, and even close to zero.

In a sense, the history of the comprehension of magnetic materials in the twentieth century has been, above all, the history of the elaboration of Weiss’ ideas. It took many years before quantum mechanics could give some hint to the microscopic interpretation of the molecular field. It took even longer before the importance of the concept of magnetic domain could be fully appreciated and exploited. In fact, we shall see that magnetic domains are the result of the complex and delicate balance of several competing energy terms, a balance by no means trivial to treat theoretically. However, these difficulties did not prevent domains from acquiring the status of real objects of the physical world, when direct...

PDFPDF (Adobe DRM)
Größe: 57,9 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 10,2 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Trigonometrie, Analytische Geometrie, Algebra, Wahrscheinlichkeit

von Walter Strampp

eBook Download (2024)
De Gruyter (Verlag)
CHF 92,75
Angewandte Analysis im Bachelorstudium

von Michael Knorrenschild

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
CHF 34,15

von Siegfried Völkel; Horst Bach; Jürgen Schäfer …

eBook Download (2024)
Carl Hanser Verlag GmbH & Co. KG
CHF 34,15