Arithmetical Functions
Springer Berlin (Verlag)
978-3-642-50028-2 (ISBN)
1. Selberg's fonnula . . . . . . 1
2. A variant of Selberg's formula 6 12
3. Wirsing's inequality . . . . . 17
4. The prime number theorem. .
I The prime number theorem and Selberg's method.-
1. Selberg's formula.-
2. A variant of Selberg's formula.-
3. Wirsing's inequality.-
4. The prime number theorem.-
5. The order of magnitude of the divisor function.- Notes on Chapter I.- II The zeta-function of Riemann.-
1. The functional equation.-
2. The Riemann-von Mangoldt formula.-
3. The entire function ?.-
4. Hardy's theorem.-
5. Hamburger's theorem.- Notes on Chapter II.- III Littlewood's theorem and Weyl's method.-
1. Zero-free region of ?.-
2. Weyl's inequality.-
3. Some results of Hardy and Littlewood and of Weyl.-
4. Littlewood's theorem.-
5. Applications of Littlewood's theorem.- Notes on Chapter III.- IV Vinogradov's method.-
1. A refinement of Littlewood's theorem.-
2. An outline of the method.-
3. Vinogradov's mean-value theorem.-
4. Vinogradov's inequality.-
5. Estimation of sections of ?(s) in the critical strip.-
6. Chudakov's theorem.-
7. Approximation of ?(x).- Notes on Chapter IV.- V Theorems of Hoheisel and of Ingham.-
1. The difference between consecutive primes.-
2. Landau's formula for the Chebyshev function ?.-
3. Hoheisel's theorem.-
4. Two auxiliary lemmas.-
5. Ingham's theorem.-
6. An application of Chudakov's theorem.- Notes on Chapter V.- VI Dirichlet's L-functions and Siegel's theorem.-
1. Characters and L-functions.-
2. Zeros of L-functions.-
3. Proper characters.-
4. The functional equation of L(s,?).-
5. Siegel's theorem.- Notes on Chapter VI.- VII Theorems of Hardy-Ramanujan and of Rademacher on the partition function.-
1. The partition function.-
2. A simple case.-
3. A bound for p(n).-
4. A property of the generatingfunction of p(n.-
5. The Dedekind ?-function.-
6. The Hardy-Ramanujan formula.-
7. Rademacher's identity.- Notes on Chapter VII.- VIII Dirichlet's divisor problem.-
1. The average order of the divisor function.-
2. An application of Perron's formula.-
3. An auxiliary function.-
4. An identity involving the divisor function.-
5. Voronoi's theorem.-
6. A theorem of A. S. Besicovitch.-
7. Theorems of Hardy and of Ingham.-
8. Equiconvergence theorems of A. Zygmund.-
9. The Voronoi identity.- Notes on Chapter VIII.- A list of books.
Erscheint lt. Verlag | 31.5.2012 |
---|---|
Reihe/Serie | Grundlehren der mathematischen Wissenschaften |
Zusatzinfo | XI, 236 p. 1 illus. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 152 x 229 mm |
Gewicht | 362 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Schlagworte | arithmetic • Arithmetische Funktion • Function • Mathematics • Number Theory • Prime • Prime number • Proof • Theorem |
ISBN-10 | 3-642-50028-5 / 3642500285 |
ISBN-13 | 978-3-642-50028-2 / 9783642500282 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich