Nicht aus der Schweiz? Besuchen Sie lehmanns.de

A Basic Course in Algebraic Topology

Buch | Hardcover
431 Seiten
1991
Springer-Verlag New York Inc.
978-0-387-97430-9 (ISBN)

Lese- und Medienproben

A Basic Course in Algebraic Topology - William S. Massey
CHF 127,30 inkl. MwSt
Zu diesem Artikel existiert eine Nachauflage
This textbook is intended for a course in algebraic topology at the beginning graduate level. The main topics covered are the classification of compact 2-manifolds, the fundamental group, covering spaces, singular homology theory, and singular cohomology theory. These topics are developed systematically, avoiding all unnecessary definitions, terminology, and technical machinery. The text consists of material from the first five chapters of the author's earlier book, Algebraic Topology; an Introduction (GTM 56) together with almost all of his book, Singular Homology Theory (GTM 70). The material from the two earlier books has been substantially revised, corrected, and brought up to date. 

William S. Massey (1920-2017) was an American mathematician known for his work in algebraic topology. The Blakers-Massey theorem and the Massey product were both named for him. His textbooks Singular Homology Theory and Algebraic Topology: An Introduction are also in the Graduate Texts in Mathematics series.

1: Two-Dimensional Manifolds .- 2: The Fundamental Group .- 3: Free Groups and Free Products of Groups.-  4: Seifert and Van Kampen Theorem on the Fundamental Group of the Union of Two Spaces. Applications .-  5: Covering Spaces .- 6: Background and Motivation for Homology Theory .- 7: Definitions and Basic Properties of Homology Theory .- 8: Determination of the Homology Groups of Certain Spaces: Applications and Further Properties of Homology Theory .- 9: Homology of CW-Complexes.-  10: Homology with Arbitrary Coefficient Groups .- 11: The Homology of Product Spaces.- 12: Cohomology Theory.- 13: Products in Homology and Cohomology.- 14: Duality Theorems for the Homology of Manifolds.- 15: Cup Products in Projective Spaces and Applications of Cup Products. Appendix A: A Proof of De Rham's Theorem..-  Appendix B: Permutation Groups or Tranformation Groups.

Erscheint lt. Verlag 29.5.1997
Reihe/Serie Graduate Texts in Mathematics ; 127
Zusatzinfo XVIII, 431 p.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
Naturwissenschaften Physik / Astronomie
ISBN-10 0-387-97430-X / 038797430X
ISBN-13 978-0-387-97430-9 / 9780387974309
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich