Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Functional Analysis and Applied Optimization in Banach Spaces - Fabio Botelho

Functional Analysis and Applied Optimization in Banach Spaces

Applications to Non-Convex Variational Models

(Autor)

Buch | Hardcover
XVIII, 560 Seiten
2014 | 2014
Springer International Publishing (Verlag)
978-3-319-06073-6 (ISBN)
CHF 194,70 inkl. MwSt
  • Versand in 10-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This book introduces the basic concepts of real and functional analysis. It presents the fundamentals of the calculus of variations, convex analysis, duality, and optimization that are necessary to develop applications to physics and engineering problems. The book includes introductory and advanced concepts in measure and integration, as well as an introduction to Sobolev spaces. The problems presented are nonlinear, with non-convex variational formulation. Notably, the primal global minima may not be attained in some situations, in which cases the solution of the dual problem corresponds to an appropriate weak cluster point of minimizing sequences for the primal one. Indeed, the dual approach more readily facilitates numerical computations for some of the selected models. While intended primarily for applied mathematicians, the text will also be of interest to engineers, physicists, and other researchers in related fields.

1. Topological Vector Spaces.- 2. The Hahn-Bananch Theorems and Weak Topologies.- 3. Topics on Linear Operators.- 4. Basic Results on Measure and Integration.- 5. The Lebesgue Measure in Rn.- 6. Other Topics in Measure and Integration.- 7. Distributions.- 8. The Lebesque and Sobolev Spaces.- 9. Basic Concepts on the Calculus of Variations.- 10. Basic Concepts on Convex Analysis.- 11. Constrained Variational Analysis.- 12. Duality Applied to Elasticity.- 13. Duality Applied to a Plate Model.- 14. About Ginzburg-Landau Type Equations: The Simpler Real Case.- 15. Full Complex Ginzburg-Landau System.- 16. More on Duality and Computation in the Ginzburg-Landau System.- 17. On Duality Principles for Scalar and Vectorial Multi-Well Variational Problems.- 18. More on Duality Principles for Multi-Well Problems.- 19. Duality and Computation for Quantum Mechanics Models.- 20. Duality Applied to the Optimal Design in Elasticity.- 21. Duality Applied to Micro-magnetism.- 22. The Generalized Method of Lines Applied to Fluid Mechanics.- 23. Duality Applied to the Optimal Control and Optimal Design of a Beam Model.

"The aim of the present book is to consider a variety of problems arising in applications in relation with non-convex variational models. ... The book will be a valuable resource for students and researchers in applied mathematics, physics, mechanics, and engineering." (Ján Lovísek, Mathematical Reviews, August, 2015)

Erscheint lt. Verlag 3.7.2014
Zusatzinfo XVIII, 560 p. 57 illus., 51 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 1026 g
Themenwelt Mathematik / Informatik Mathematik Analysis
Schlagworte applied optimization • Calculus of Variations • Duality • Functional Analysis • variational convex analysis
ISBN-10 3-319-06073-2 / 3319060732
ISBN-13 978-3-319-06073-6 / 9783319060736
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch (2022)
Springer Spektrum (Verlag)
CHF 109,95