Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Für diesen Artikel ist leider kein Bild verfügbar.

Torsors, Etale Homotopy and Applications to Rational Points (eBook)

eBook Download: EPUB
2013 | 1. Auflage
Cambridge University Press (Verlag)
978-1-107-24188-6 (ISBN)
Systemvoraussetzungen
70,50 inkl. MwSt
(CHF 68,85)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Torsors, also known as principal bundles or principal homogeneous spaces, are ubiquitous in mathematics. The purpose of this book is to present expository lecture notes and cutting-edge research papers on the theory and applications of torsors and tale homotopy, all written from different perspectives by leading experts. Part one of the book contains lecture notes on recent uses of torsors in geometric invariant theory and representation theory, plus an introduction to the tale homotopy theory of Artin and Mazur. Part two of the book features a milestone paper on the tale homotopy approach to the arithmetic of rational points. Furthermore, the reader will find a collection of research articles on algebraic groups and homogeneous spaces, rational and K3 surfaces, geometric invariant theory, rational points, descent and the Brauer–Manin obstruction. Together, these give a state-of-the-art view of a broad area at the crossroads of number theory and algebraic geometry.
Torsors, also known as principal bundles or principal homogeneous spaces, are ubiquitous in mathematics. The purpose of this book is to present expository lecture notes and cutting-edge research papers on the theory and applications of torsors and etale homotopy, all written from different perspectives by leading experts. Part one of the book contains lecture notes on recent uses of torsors in geometric invariant theory and representation theory, plus an introduction to the etale homotopy theory of Artin and Mazur. Part two of the book features a milestone paper on the etale homotopy approach to the arithmetic of rational points. Furthermore, the reader will find a collection of research articles on algebraic groups and homogeneous spaces, rational and K3 surfaces, geometric invariant theory, rational points, descent and the Brauer-Manin obstruction. Together, these give a state-of-the-art view of a broad area at the crossroads of number theory and algebraic geometry.
Erscheint lt. Verlag 18.4.2013
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
Mathematik / Informatik Mathematik Geometrie / Topologie
Technik
ISBN-10 1-107-24188-X / 110724188X
ISBN-13 978-1-107-24188-6 / 9781107241886
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich