Ramanujan's Lost Notebook (eBook)
XVII, 439 Seiten
Springer New York (Verlag)
978-1-4614-4081-9 (ISBN)
????In the spring of 1976, George Andrews of Pennsylvania State University visited the library at Trinity College, Cambridge, to examine the papers of the late G.N. Watson. Among these papers, Andrews discovered a sheaf of 138 pages in the handwriting of Srinivasa Ramanujan. This manuscript was soon designated, 'Ramanujan's lost notebook.' Its discovery has frequently been deemed the mathematical equivalent of finding Beethoven's tenth symphony.
This volume is the fourth of five volumes that the authors plan to write on Ramanujan's lost notebook.? In contrast to the first three books on Ramanujan's Lost Notebook, the fourth book does not focus on q-series. Most of the entries examined in this volume fall under the purviews of number theory and classical analysis. Several incomplete manuscripts of Ramanujan published by Narosa with the lost notebook are discussed. Three of the partial manuscripts are on diophantine approximation, and others are in classical Fourier analysis and prime number theory. Most of the entries in number theory fall under the umbrella of classical analytic number theory. Perhaps the most intriguing entries are connected with the classical, unsolved circle and divisor problems.
Review from the second volume:
'Fans of Ramanujan's mathematics are sure to be delighted by this book. While some of the content is taken directly from published papers, most chapters contain new material and some previously published proofs have been improved. Many entries are just begging for further study and will undoubtedly be inspiring research for decades to come. The next installment in this series is eagerly awaited.'
- MathSciNet
Review from the first volume:
'Andrews and Berndt are to be congratulated on the job they are doing. This is the first step...on the way to an understanding of the work of the genius Ramanujan. It should act as an inspiration to future generations of mathematicians to tackle a job that will never be complete.'
- Gazette of the Australian Mathematical Society?
George E. Andrews is currently a professor of mathematics at Pennsylvania State University. Bruce C. Berndt is currently a professor of mathematics at the University of Illinois.
????In the spring of 1976, George Andrews of Pennsylvania State University visited the library at Trinity College, Cambridge, to examine the papers of the late G.N. Watson. Among these papers, Andrews discovered a sheaf of 138 pages in the handwriting of Srinivasa Ramanujan. This manuscript was soon designated, "e;Ramanujan's lost notebook."e; Its discovery has frequently been deemed the mathematical equivalent of finding Beethoven's tenth symphony.This volume is the fourth of five volumes that the authors plan to write on Ramanujan's lost notebook.? In contrast to the first three books on Ramanujan's Lost Notebook, the fourth book does not focus on q-series. Most of the entries examined in this volume fall under the purviews of number theory and classical analysis. Several incomplete manuscripts of Ramanujan published by Narosa with the lost notebook are discussed. Three of the partial manuscripts are on diophantine approximation, and others are in classical Fourier analysisand prime number theory. Most of the entries in number theory fall under the umbrella of classical analytic number theory. Perhaps the most intriguing entries are connected with the classical, unsolved circle and divisor problems.Review from the second volume:"e;Fans of Ramanujan's mathematics are sure to be delighted by this book. While some of the content is taken directly from published papers, most chapters contain new material and some previously published proofs have been improved. Many entries are just begging for further study and will undoubtedly be inspiring research for decades to come. The next installment in this series is eagerly awaited."e;- MathSciNetReview from the first volume:"e;Andrews and Berndt are to be congratulated on the job they are doing. This is the first step...on the way to an understanding of the work of the genius Ramanujan. It should act as an inspiration to future generations of mathematicians to tackle a job that willnever be complete."e;- Gazette of the Australian Mathematical Society?
George E. Andrews is currently a professor of mathematics at Pennsylvania State University. Bruce C. Berndt is currently a professor of mathematics at the University of Illinois.
Preface.- 1 Introduction.- 2 Double Series of Bessel Functions and the Circle and Divisor Problems.- 3 Koshliakov's Formula and Guinand's Formula.- 4 Theorems Featuring the Gamma Function.- 5 Hypergeometric Series.- 6 Euler's Constant.- 7 Problems in Diophantine Approximation.- 8 Number Theory.- 9 Divisor Sums.- 10 Identities Related to the Riemann Zeta Function and Periodic Zeta Functions.- 11 Two Partial Unpublished Manuscripts on Sums Involving Primes.- 12 Infinite Series.- 13 A Partial Manuscript on Fourier and Laplace Transforms.- 14 Integral Analogues of Theta Functions adn Gauss Sums.- 15 Functional Equations for Products of Mellin Transforms.- 16 Infinite Products.- 17 A Preliminary Version of Ramanujan's Paper, On the Integral ∫_0^x tan^(-1)t)/t dt.- 18 A Partial Manuscript Connected with Ramanujan's Paper, Some Definite Integrals.- 19 Miscellaneous Results in Analysis.- 20 Elementary Results.- 21 A Strange, Enigmatic Partial Manuscript.- Location Guide.- Provenance.- References.- Index.
Erscheint lt. Verlag | 4.6.2013 |
---|---|
Zusatzinfo | XVII, 439 p. |
Verlagsort | New York |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie | |
Mathematik / Informatik ► Mathematik ► Statistik | |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Technik | |
Schlagworte | Bessel functions • circle and divisor problems • classical analysis • classical analytic number theory • Diophantine approximation • divisor sums • Euler's constant • Fourier Transforms • gamma function • Guinand's Formula • hypergeometric functions • Koshliakov's Formula • Mellin transforms • prime number theorem • transformation formulas • Trigonometric Series |
ISBN-10 | 1-4614-4081-5 / 1461440815 |
ISBN-13 | 978-1-4614-4081-9 / 9781461440819 |
Haben Sie eine Frage zum Produkt? |
Größe: 5,1 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich