Nicht aus der Schweiz? Besuchen Sie lehmanns.de
An Introduction to Statistical Analysis of Random Arrays - V. L. Girko

An Introduction to Statistical Analysis of Random Arrays

(Autor)

Buch | Hardcover
XXVI, 673 Seiten
1998 | 1. Reprint 2018
De Gruyter (Verlag)
978-3-11-035477-5 (ISBN)
CHF 619,95 inkl. MwSt
  • Versand in 10-14 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
No detailed description available for "An Introduction to Statistical Analysis of Random Arrays".
Frontmatter -- CONTENTS -- List of basic notations and assumptions -- Preface and some historical remarks -- Chapter 1. Introduction to the theory of sample matrices of fixed dimension -- Chapter 2. Canonical equations -- Chapter 3. The First Law for the eigenvalues and eigenvectors of random symmetric matrices -- Chapter 4. The Second Law for the singular values and eigenvectors of random matrices. Inequalities for the spectral radius of large random matrices -- Chapter 5. The Third Law for the eigenvalues and eigenvectors of empirical covariance matrices -- Chapter 6. The first proof of the Strong Circular Law -- Chapter 7. Strong Law for normalized spectral functions of nonselfadjoint random matrices with independent row vectors and simple rigorous proof of the Strong Circular Law -- Chapter 8. Rigorous proof of the Strong Elliptic Law -- Chapter 9. The Circular and Uniform Laws for eigenvalues of random nonsymmetric complex matrices with independent entries -- Chapter 10. Strong V-Law for eigenvalues of nonsymmetric random matrices -- Chapter 11. Convergence rate of the expected spectral functions of symmetric random matrices is equal to 0(n-1/2) -- Chapter 12. Convergence rate of expected spectral functions of the sample covariance matrix ?m„(n) is equal to 0(n-1/2) under the condition m„n-1?c<1 -- Chapter 13. The First Spacing Law for random symmetric matrices -- Chapter 14. Ten years of General Statistical Analysis (The main G-estimators of General Statistical Analysis) -- References -- Index

Frontmatter -- CONTENTS -- List of basic notations and assumptions -- Preface and some historical remarks -- Chapter 1. Introduction to the theory of sample matrices of fixed dimension -- Chapter 2. Canonical equations -- Chapter 3. The First Law for the eigenvalues and eigenvectors of random symmetric matrices -- Chapter 4. The Second Law for the singular values and eigenvectors of random matrices. Inequalities for the spectral radius of large random matrices -- Chapter 5. The Third Law for the eigenvalues and eigenvectors of empirical covariance matrices -- Chapter 6. The first proof of the Strong Circular Law -- Chapter 7. Strong Law for normalized spectral functions of nonselfadjoint random matrices with independent row vectors and simple rigorous proof of the Strong Circular Law -- Chapter 8. Rigorous proof of the Strong Elliptic Law -- Chapter 9. The Circular and Uniform Laws for eigenvalues of random nonsymmetric complex matrices with independent entries -- Chapter 10. Strong V-Law for eigenvalues of nonsymmetric random matrices -- Chapter 11. Convergence rate of the expected spectral functions of symmetric random matrices is equal to 0(n-1/2) -- Chapter 12. Convergence rate of expected spectral functions of the sample covariance matrix ?m"(n) is equal to 0(n-1/2) under the condition m"n-1?c<1 -- Chapter 13. The First Spacing Law for random symmetric matrices -- Chapter 14. Ten years of General Statistical Analysis (The main G-estimators of General Statistical Analysis) -- References -- Index

Erscheint lt. Verlag 1.12.1998
Verlagsort Berlin/Boston
Sprache englisch
Maße 155 x 240 mm
Gewicht 1240 g
Themenwelt Mathematik / Informatik Mathematik Allgemeines / Lexika
Mathematik / Informatik Mathematik Statistik
Schlagworte . • Allgemeines, Lexika • ALTOMARE • GSTM61 • Markov • Mathematics • operators • probability & statistics • probability and statistics • Statistics • Statistik • Zufall • Zufallsgröße
ISBN-10 3-11-035477-2 / 3110354772
ISBN-13 978-3-11-035477-5 / 9783110354775
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich