Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Accelerating MATLAB with GPU Computing -  Youngmin Kim,  Jung W. Suh

Accelerating MATLAB with GPU Computing (eBook)

A Primer with Examples
eBook Download: EPUB
2013 | 1. Auflage
258 Seiten
Elsevier Science (Verlag)
978-0-12-407916-8 (ISBN)
Systemvoraussetzungen
53,95 inkl. MwSt
(CHF 52,70)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Beyond simulation and algorithm development, many developers increasingly use MATLAB even for product deployment in computationally heavy fields. This often demands that MATLAB codes run faster by leveraging the distributed parallelism of Graphics Processing Units (GPUs). While MATLAB successfully provides high-level functions as a simulation tool for rapid prototyping, the underlying details and knowledge needed for utilizing GPUs make MATLAB users hesitate to step into it. Accelerating MATLAB with GPUs offers a primer on bridging this gap. Starting with the basics, setting up MATLAB for CUDA (in Windows, Linux and Mac OS X) and profiling, it then guides users through advanced topics such as CUDA libraries. The authors share their experience developing algorithms using MATLAB, C++ and GPUs for huge datasets, modifying MATLAB codes to better utilize the computational power of GPUs, and integrating them into commercial software products.  Throughout the book, they demonstrate many example codes that can be used as templates of C-MEX and CUDA codes for readers' projects.  Download example codes from the publisher's website: http://booksite.elsevier.com/9780124080805/ - Shows how to accelerate MATLAB codes through the GPU for parallel processing, with minimal hardware knowledge - Explains the related background on hardware, architecture and programming for ease of use - Provides simple worked examples of MATLAB and CUDA C codes as well as templates that can be reused in real-world projects

Jung W. Suh is a senior algorithm engineer and research scientist at KLA-Tencor. Dr. Suh received his Ph.D. from Virginia Tech in 2007 for his 3D medical image processing work. He was involved in the development of MPEG-4 and Digital Mobile Broadcasting (DMB) systems in Samsung Electronics. He was a senior scientist at HeartFlow, Inc., prior to joining KLA-Tencor. His research interests are in the fields of biomedical image processing, pattern recognition, machine learning and image/video compression. He has more than 30 journal and conference papers and 6 patents.
Beyond simulation and algorithm development, many developers increasingly use MATLAB even for product deployment in computationally heavy fields. This often demands that MATLAB codes run faster by leveraging the distributed parallelism of Graphics Processing Units (GPUs). While MATLAB successfully provides high-level functions as a simulation tool for rapid prototyping, the underlying details and knowledge needed for utilizing GPUs make MATLAB users hesitate to step into it. Accelerating MATLAB with GPUs offers a primer on bridging this gap. Starting with the basics, setting up MATLAB for CUDA (in Windows, Linux and Mac OS X) and profiling, it then guides users through advanced topics such as CUDA libraries. The authors share their experience developing algorithms using MATLAB, C++ and GPUs for huge datasets, modifying MATLAB codes to better utilize the computational power of GPUs, and integrating them into commercial software products. Throughout the book, they demonstrate many example codes that can be used as templates of C-MEX and CUDA codes for readers' projects. Download example codes from the publisher's website: http://booksite.elsevier.com/9780124080805/- Shows how to accelerate MATLAB codes through the GPU for parallel processing, with minimal hardware knowledge- Explains the related background on hardware, architecture and programming for ease of use- Provides simple worked examples of MATLAB and CUDA C codes as well as templates that can be reused in real-world projects
Erscheint lt. Verlag 18.11.2013
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Netzwerke
Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Mathematik / Informatik Informatik Theorie / Studium
Informatik Weitere Themen Hardware
ISBN-10 0-12-407916-4 / 0124079164
ISBN-13 978-0-12-407916-8 / 9780124079168
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 5,2 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich