Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Area, Lattice Points, and Exponential Sums - M. N. Huxley

Area, Lattice Points, and Exponential Sums

(Autor)

Buch | Hardcover
506 Seiten
1996
Oxford University Press (Verlag)
978-0-19-853466-2 (ISBN)
CHF 459,45 inkl. MwSt
This volume is concerned with the application of exponential sum techniques to a variety of problems in number theory, in particular the Riemann Zeta Function and the problem of estimating the number of lattice points in regions.
In analytic number theory a large number of problems can be "reduced" to problems involving the estimation of exponential sums in one or several variables. This book is a thorough treatment of the developments arising from the method developed by Bombieri and Iwaniec in 1986 for estimating the Riemann zeta function on the line *s = 1/2. Huxley and his coworkers (mostly Huxley) have taken this method and vastly extended and improved it. The powerful techniques presented here go considerably beyond older methods for estimating exponential sums such as van de Corput's method. The potential for the method is far from being exhausted, and there is considerable motivation for other researchers to try to master this subject. However, anyone currently trying to learn all of this material has the formidable task of wading through numerous papers in the literature. This book simplifies that task by presenting all of the relevant literature and a good part of the background in one package.

The audience for the book will be mathematics graduate students and faculties with a research interest in analytic theory; more specifically, those with an interest in exponential sum methods. The book is self-contained; any graduate student with a one semester course in analytic number theory should have a more than sufficient background.

Introduction ; Part I Elementary Methods ; 1. The rational line ; 2. Polygons and area ; 3. Integer points close to a curve ; 4. Rational points close to a curve ; Part II The Bombieri-Iwaniec Method ; 5. Analytic methods ; 7. The simple exponential sum ; 8. Exponential sums with a difference ; 9. Exponential sums with a difference ; 10. Exponential sums with modular form coefficients ; Part III The First Spacing Problem: Integer Vectors ; 11. The ruled surface method ; 12. The Hardy Littlewood method ; 13. The first spacing problem for the double sum ; Part IV The Second Spacing Problem: Rational vectors ; 14. The first and second conditions ; 15. Consecutive minor arcs ; Part V Results and Applications ; 17. Exponential sum theorems ; 18. Lattice points and area ; 19. Further results ; 20. Sums with modular form coefficients ; m 21 Applications to the Riemann zeta function ; 22. An application to number theory: prime integer points ; Part IV Related Work and Further Ideas ; 23. Related work ; 24. Further ideas ; References

Erscheint lt. Verlag 13.6.1996
Reihe/Serie London Mathematical Society Monographs ; 13
Zusatzinfo line figures
Verlagsort Oxford
Sprache englisch
Maße 161 x 241 mm
Gewicht 885 g
Themenwelt Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
ISBN-10 0-19-853466-3 / 0198534663
ISBN-13 978-0-19-853466-2 / 9780198534662
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Sieben ausgewählte Themenstellungen

von Hartmut Menzer; Ingo Althöfer

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 89,95
unlock your imagination with the narrative of numbers

von Dave Kester; Mikaela Ashcroft

Buch | Softcover (2024)
Advantage Media Group (Verlag)
CHF 27,90

von Martin Aigner; Günter M. Ziegler

Buch | Hardcover (2018)
Springer Berlin (Verlag)
CHF 82,35